Properties

Label 2-392-8.3-c0-0-0
Degree $2$
Conductor $392$
Sign $1$
Analytic cond. $0.195633$
Root an. cond. $0.442304$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 1.41·3-s + 4-s + 1.41·6-s − 8-s + 1.00·9-s − 1.41·12-s + 16-s + 1.41·17-s − 1.00·18-s + 1.41·19-s + 1.41·24-s + 25-s − 32-s − 1.41·34-s + 1.00·36-s − 1.41·38-s − 1.41·41-s − 1.41·48-s − 50-s − 2.00·51-s − 2.00·57-s + 1.41·59-s + 64-s − 2·67-s + 1.41·68-s − 1.00·72-s + ⋯
L(s)  = 1  − 2-s − 1.41·3-s + 4-s + 1.41·6-s − 8-s + 1.00·9-s − 1.41·12-s + 16-s + 1.41·17-s − 1.00·18-s + 1.41·19-s + 1.41·24-s + 25-s − 32-s − 1.41·34-s + 1.00·36-s − 1.41·38-s − 1.41·41-s − 1.41·48-s − 50-s − 2.00·51-s − 2.00·57-s + 1.41·59-s + 64-s − 2·67-s + 1.41·68-s − 1.00·72-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(0.195633\)
Root analytic conductor: \(0.442304\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{392} (99, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 392,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3708581998\)
\(L(\frac12)\) \(\approx\) \(0.3708581998\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
7 \( 1 \)
good3 \( 1 + 1.41T + T^{2} \)
5 \( 1 - T^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - 1.41T + T^{2} \)
19 \( 1 - 1.41T + T^{2} \)
23 \( 1 - T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 1.41T + T^{2} \)
43 \( 1 + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - 1.41T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + 2T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 1.41T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - 1.41T + T^{2} \)
89 \( 1 + 1.41T + T^{2} \)
97 \( 1 - 1.41T + T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.60850772798744020230300107710, −10.47532312828152730033100519341, −10.00930037858288919563303014591, −8.881218437890591878014609033370, −7.69499955236362975709200795848, −6.88355989854771910773220585407, −5.86342121267483289858218510497, −5.10615939355887923329439717519, −3.19680226230930867537077590072, −1.16546286981075352074177568114, 1.16546286981075352074177568114, 3.19680226230930867537077590072, 5.10615939355887923329439717519, 5.86342121267483289858218510497, 6.88355989854771910773220585407, 7.69499955236362975709200795848, 8.881218437890591878014609033370, 10.00930037858288919563303014591, 10.47532312828152730033100519341, 11.60850772798744020230300107710

Graph of the $Z$-function along the critical line