L(s) = 1 | + (15 − 25.9i)3-s + (16 + 27.7i)5-s + (−328.5 − 568. i)9-s + (312 − 540. i)11-s + 708·13-s + 960·15-s + (467 − 808. i)17-s + (929 + 1.60e3i)19-s + (560 + 969. i)23-s + (1.05e3 − 1.81e3i)25-s − 1.24e4·27-s − 1.17e3·29-s + (1.45e3 − 2.51e3i)31-s + (−9.36e3 − 1.62e4i)33-s + (6.23e3 + 1.07e4i)37-s + ⋯ |
L(s) = 1 | + (0.962 − 1.66i)3-s + (0.286 + 0.495i)5-s + (−1.35 − 2.34i)9-s + (0.777 − 1.34i)11-s + 1.16·13-s + 1.10·15-s + (0.391 − 0.678i)17-s + (0.590 + 1.02i)19-s + (0.220 + 0.382i)23-s + (0.336 − 0.582i)25-s − 3.27·27-s − 0.259·29-s + (0.271 − 0.470i)31-s + (−1.49 − 2.59i)33-s + (0.748 + 1.29i)37-s + ⋯ |
Λ(s)=(=(392s/2ΓC(s)L(s)(−0.701+0.712i)Λ(6−s)
Λ(s)=(=(392s/2ΓC(s+5/2)L(s)(−0.701+0.712i)Λ(1−s)
Degree: |
2 |
Conductor: |
392
= 23⋅72
|
Sign: |
−0.701+0.712i
|
Analytic conductor: |
62.8704 |
Root analytic conductor: |
7.92908 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ392(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 392, ( :5/2), −0.701+0.712i)
|
Particular Values
L(3) |
≈ |
3.471743728 |
L(21) |
≈ |
3.471743728 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+(−15+25.9i)T+(−121.5−210.i)T2 |
| 5 | 1+(−16−27.7i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(−312+540.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−708T+3.71e5T2 |
| 17 | 1+(−467+808.i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−929−1.60e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−560−969.i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+1.17e3T+2.05e7T2 |
| 31 | 1+(−1.45e3+2.51e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−6.23e3−1.07e4i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1+2.66e3T+1.15e8T2 |
| 43 | 1+7.14e3T+1.47e8T2 |
| 47 | 1+(3.73e3+6.46e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−1.36e4+2.36e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−1.24e3+2.15e3i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(5.54e3+9.60e3i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(1.98e4−3.44e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+6.98e4T+1.80e9T2 |
| 73 | 1+(−8.22e3+1.42e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(3.91e4+6.78e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1+1.09e5T+3.93e9T2 |
| 89 | 1+(2.84e4+4.93e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1−1.15e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.990966490986119600583242081318, −8.837458445065026202240993100383, −8.309740891849449803749390683242, −7.36741254285767144816888849207, −6.38705977097259824679989232719, −5.89652998145406256732984954848, −3.55327563028368203396209140894, −2.95253941380448723378189919022, −1.56768343715656887228263965510, −0.792491763590318529497716301782,
1.54309185522367095235590273354, 2.92967951215178428732109902065, 4.01136531546143074472315228788, 4.67713129464723473405988880085, 5.72489597203325049824351645442, 7.28605677803584097834178864814, 8.529984197786673124661277343918, 9.099843257146321143380638974532, 9.727390410789578591845262431251, 10.59094767246149822484017994077