L(s) = 1 | + (15 − 25.9i)3-s + (16 + 27.7i)5-s + (−328.5 − 568. i)9-s + (312 − 540. i)11-s + 708·13-s + 960·15-s + (467 − 808. i)17-s + (929 + 1.60e3i)19-s + (560 + 969. i)23-s + (1.05e3 − 1.81e3i)25-s − 1.24e4·27-s − 1.17e3·29-s + (1.45e3 − 2.51e3i)31-s + (−9.36e3 − 1.62e4i)33-s + (6.23e3 + 1.07e4i)37-s + ⋯ |
L(s) = 1 | + (0.962 − 1.66i)3-s + (0.286 + 0.495i)5-s + (−1.35 − 2.34i)9-s + (0.777 − 1.34i)11-s + 1.16·13-s + 1.10·15-s + (0.391 − 0.678i)17-s + (0.590 + 1.02i)19-s + (0.220 + 0.382i)23-s + (0.336 − 0.582i)25-s − 3.27·27-s − 0.259·29-s + (0.271 − 0.470i)31-s + (−1.49 − 2.59i)33-s + (0.748 + 1.29i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.701 + 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(3.471743728\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.471743728\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-15 + 25.9i)T + (-121.5 - 210. i)T^{2} \) |
| 5 | \( 1 + (-16 - 27.7i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-312 + 540. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 708T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-467 + 808. i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-929 - 1.60e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-560 - 969. i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 + 1.17e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.45e3 + 2.51e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-6.23e3 - 1.07e4i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 + 2.66e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 7.14e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (3.73e3 + 6.46e3i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.36e4 + 2.36e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.24e3 + 2.15e3i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (5.54e3 + 9.60e3i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (1.98e4 - 3.44e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 6.98e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-8.22e3 + 1.42e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.91e4 + 6.78e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 1.09e5T + 3.93e9T^{2} \) |
| 89 | \( 1 + (2.84e4 + 4.93e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.15e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.990966490986119600583242081318, −8.837458445065026202240993100383, −8.309740891849449803749390683242, −7.36741254285767144816888849207, −6.38705977097259824679989232719, −5.89652998145406256732984954848, −3.55327563028368203396209140894, −2.95253941380448723378189919022, −1.56768343715656887228263965510, −0.792491763590318529497716301782,
1.54309185522367095235590273354, 2.92967951215178428732109902065, 4.01136531546143074472315228788, 4.67713129464723473405988880085, 5.72489597203325049824351645442, 7.28605677803584097834178864814, 8.529984197786673124661277343918, 9.099843257146321143380638974532, 9.727390410789578591845262431251, 10.59094767246149822484017994077