| L(s) = 1 | + (3.44 + 5.96i)3-s + (−24.2 + 41.9i)5-s + (97.7 − 169. i)9-s + (81.7 + 141. i)11-s + 120.·13-s − 334.·15-s + (39.0 + 67.7i)17-s + (−1.13e3 + 1.96e3i)19-s + (1.22e3 − 2.12e3i)23-s + (388. + 672. i)25-s + 3.02e3·27-s + 6.98e3·29-s + (1.39e3 + 2.41e3i)31-s + (−563. + 975. i)33-s + (−4.72e3 + 8.19e3i)37-s + ⋯ |
| L(s) = 1 | + (0.221 + 0.382i)3-s + (−0.433 + 0.750i)5-s + (0.402 − 0.696i)9-s + (0.203 + 0.352i)11-s + 0.198·13-s − 0.383·15-s + (0.0328 + 0.0568i)17-s + (−0.719 + 1.24i)19-s + (0.483 − 0.836i)23-s + (0.124 + 0.215i)25-s + 0.797·27-s + 1.54·29-s + (0.261 + 0.452i)31-s + (−0.0900 + 0.156i)33-s + (−0.567 + 0.983i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(3)\) |
\(\approx\) |
\(1.563869391\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.563869391\) |
| \(L(\frac{7}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (-3.44 - 5.96i)T + (-121.5 + 210. i)T^{2} \) |
| 5 | \( 1 + (24.2 - 41.9i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-81.7 - 141. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 120.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-39.0 - 67.7i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.13e3 - 1.96e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.22e3 + 2.12e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 6.98e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.39e3 - 2.41e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (4.72e3 - 8.19e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.00e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 6.93e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-582. + 1.00e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (4.28e3 + 7.41e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-3.11e3 - 5.38e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (2.09e4 - 3.63e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (906. + 1.56e3i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 5.68e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (2.21e4 + 3.83e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (1.74e4 - 3.02e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 3.96e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (6.31e4 - 1.09e5i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.45e5T + 8.58e9T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48934112427184071018720906316, −10.21029388536058687921306518056, −8.962108214670993252866717958063, −8.157193927626928290606992990671, −6.91658006627477802402182033268, −6.36025758956918400473141341184, −4.77968989218570865173804028144, −3.79505440413153516082231864169, −2.91003276962842405410473691899, −1.30918355503709733049173593979,
0.39612042339703032476153738517, 1.55946663897306316582593122177, 2.89783672499759581260733792532, 4.32959971510913300062754547327, 5.09157311404654653558856690389, 6.47954385666707943339723496771, 7.41646816229496811039808207563, 8.390100100970280933147336952932, 8.942965788973123336702822939171, 10.19520070824472397095392956892