Properties

Label 2-392-1.1-c5-0-50
Degree $2$
Conductor $392$
Sign $-1$
Analytic cond. $62.8704$
Root an. cond. $7.92908$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16.3·3-s + 51.0·5-s + 24.8·9-s − 273.·11-s − 369.·13-s + 834.·15-s − 1.03e3·17-s − 2.18e3·19-s − 1.01e3·23-s − 522.·25-s − 3.57e3·27-s − 212.·29-s + 229.·31-s − 4.47e3·33-s − 9.11e3·37-s − 6.04e3·39-s − 1.67e4·41-s + 1.61e4·43-s + 1.26e3·45-s + 1.12e3·47-s − 1.69e4·51-s + 3.41e4·53-s − 1.39e4·55-s − 3.57e4·57-s + 1.11e4·59-s + 3.59e4·61-s − 1.88e4·65-s + ⋯
L(s)  = 1  + 1.04·3-s + 0.912·5-s + 0.102·9-s − 0.681·11-s − 0.605·13-s + 0.958·15-s − 0.869·17-s − 1.38·19-s − 0.399·23-s − 0.167·25-s − 0.942·27-s − 0.0469·29-s + 0.0429·31-s − 0.715·33-s − 1.09·37-s − 0.636·39-s − 1.55·41-s + 1.32·43-s + 0.0933·45-s + 0.0743·47-s − 0.913·51-s + 1.67·53-s − 0.621·55-s − 1.45·57-s + 0.418·59-s + 1.23·61-s − 0.552·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(62.8704\)
Root analytic conductor: \(7.92908\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 392,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 16.3T + 243T^{2} \)
5 \( 1 - 51.0T + 3.12e3T^{2} \)
11 \( 1 + 273.T + 1.61e5T^{2} \)
13 \( 1 + 369.T + 3.71e5T^{2} \)
17 \( 1 + 1.03e3T + 1.41e6T^{2} \)
19 \( 1 + 2.18e3T + 2.47e6T^{2} \)
23 \( 1 + 1.01e3T + 6.43e6T^{2} \)
29 \( 1 + 212.T + 2.05e7T^{2} \)
31 \( 1 - 229.T + 2.86e7T^{2} \)
37 \( 1 + 9.11e3T + 6.93e7T^{2} \)
41 \( 1 + 1.67e4T + 1.15e8T^{2} \)
43 \( 1 - 1.61e4T + 1.47e8T^{2} \)
47 \( 1 - 1.12e3T + 2.29e8T^{2} \)
53 \( 1 - 3.41e4T + 4.18e8T^{2} \)
59 \( 1 - 1.11e4T + 7.14e8T^{2} \)
61 \( 1 - 3.59e4T + 8.44e8T^{2} \)
67 \( 1 + 5.75e4T + 1.35e9T^{2} \)
71 \( 1 + 2.09e4T + 1.80e9T^{2} \)
73 \( 1 - 5.64e4T + 2.07e9T^{2} \)
79 \( 1 - 4.81e4T + 3.07e9T^{2} \)
83 \( 1 + 6.43e4T + 3.93e9T^{2} \)
89 \( 1 - 6.24e4T + 5.58e9T^{2} \)
97 \( 1 - 3.52e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.980373320560426176400257852348, −8.982870480470943009933018677784, −8.409459170064418810884860828897, −7.32439579913366078392983698209, −6.21802531278008805373635084194, −5.15937049155712753270325705560, −3.88187887281872825126218783342, −2.50647744687863185405074084861, −2.01168022879392590688964391286, 0, 2.01168022879392590688964391286, 2.50647744687863185405074084861, 3.88187887281872825126218783342, 5.15937049155712753270325705560, 6.21802531278008805373635084194, 7.32439579913366078392983698209, 8.409459170064418810884860828897, 8.982870480470943009933018677784, 9.980373320560426176400257852348

Graph of the $Z$-function along the critical line