Properties

Label 2-392-1.1-c5-0-49
Degree $2$
Conductor $392$
Sign $-1$
Analytic cond. $62.8704$
Root an. cond. $7.92908$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 21.5·3-s + 14.7·5-s + 222.·9-s + 58.5·11-s − 1.17e3·13-s + 317.·15-s − 1.49e3·17-s − 498.·19-s − 1.88e3·23-s − 2.90e3·25-s − 443.·27-s + 1.91e3·29-s − 794.·31-s + 1.26e3·33-s + 2.98e3·37-s − 2.54e4·39-s − 1.19e4·41-s + 9.82e3·43-s + 3.27e3·45-s + 1.96e4·47-s − 3.22e4·51-s − 1.98e4·53-s + 862.·55-s − 1.07e4·57-s − 3.58e4·59-s − 4.99e4·61-s − 1.73e4·65-s + ⋯
L(s)  = 1  + 1.38·3-s + 0.263·5-s + 0.915·9-s + 0.145·11-s − 1.93·13-s + 0.364·15-s − 1.25·17-s − 0.317·19-s − 0.744·23-s − 0.930·25-s − 0.117·27-s + 0.422·29-s − 0.148·31-s + 0.201·33-s + 0.358·37-s − 2.67·39-s − 1.10·41-s + 0.809·43-s + 0.241·45-s + 1.29·47-s − 1.73·51-s − 0.971·53-s + 0.0384·55-s − 0.438·57-s − 1.34·59-s − 1.71·61-s − 0.509·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(62.8704\)
Root analytic conductor: \(7.92908\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 392,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 21.5T + 243T^{2} \)
5 \( 1 - 14.7T + 3.12e3T^{2} \)
11 \( 1 - 58.5T + 1.61e5T^{2} \)
13 \( 1 + 1.17e3T + 3.71e5T^{2} \)
17 \( 1 + 1.49e3T + 1.41e6T^{2} \)
19 \( 1 + 498.T + 2.47e6T^{2} \)
23 \( 1 + 1.88e3T + 6.43e6T^{2} \)
29 \( 1 - 1.91e3T + 2.05e7T^{2} \)
31 \( 1 + 794.T + 2.86e7T^{2} \)
37 \( 1 - 2.98e3T + 6.93e7T^{2} \)
41 \( 1 + 1.19e4T + 1.15e8T^{2} \)
43 \( 1 - 9.82e3T + 1.47e8T^{2} \)
47 \( 1 - 1.96e4T + 2.29e8T^{2} \)
53 \( 1 + 1.98e4T + 4.18e8T^{2} \)
59 \( 1 + 3.58e4T + 7.14e8T^{2} \)
61 \( 1 + 4.99e4T + 8.44e8T^{2} \)
67 \( 1 - 4.81e4T + 1.35e9T^{2} \)
71 \( 1 - 7.71e4T + 1.80e9T^{2} \)
73 \( 1 - 5.96e4T + 2.07e9T^{2} \)
79 \( 1 - 6.07e4T + 3.07e9T^{2} \)
83 \( 1 - 4.61e4T + 3.93e9T^{2} \)
89 \( 1 + 7.86e4T + 5.58e9T^{2} \)
97 \( 1 - 4.35e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.661230428671805496926848190197, −9.258308195658012423100159337647, −8.164168145560100094097554930807, −7.47072399774645150014467495255, −6.38499738990102780412054354784, −4.92452096408087648170908803931, −3.90274727806723163269633803715, −2.58164548455929411027220138504, −2.00844090204720046645167753416, 0, 2.00844090204720046645167753416, 2.58164548455929411027220138504, 3.90274727806723163269633803715, 4.92452096408087648170908803931, 6.38499738990102780412054354784, 7.47072399774645150014467495255, 8.164168145560100094097554930807, 9.258308195658012423100159337647, 9.661230428671805496926848190197

Graph of the $Z$-function along the critical line