Properties

Label 2-392-1.1-c5-0-37
Degree $2$
Conductor $392$
Sign $-1$
Analytic cond. $62.8704$
Root an. cond. $7.92908$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14.6·3-s + 72.1·5-s − 27.4·9-s − 246.·11-s + 1.13e3·13-s − 1.05e3·15-s − 1.64e3·17-s − 1.64e3·19-s − 469.·23-s + 2.08e3·25-s + 3.97e3·27-s + 5.81e3·29-s − 5.73e3·31-s + 3.61e3·33-s + 435.·37-s − 1.66e4·39-s − 1.12e4·41-s + 6.14e3·43-s − 1.98e3·45-s + 1.46e4·47-s + 2.41e4·51-s + 2.68e4·53-s − 1.77e4·55-s + 2.41e4·57-s − 2.50e4·59-s − 1.57e4·61-s + 8.16e4·65-s + ⋯
L(s)  = 1  − 0.941·3-s + 1.29·5-s − 0.112·9-s − 0.613·11-s + 1.85·13-s − 1.21·15-s − 1.37·17-s − 1.04·19-s − 0.184·23-s + 0.666·25-s + 1.04·27-s + 1.28·29-s − 1.07·31-s + 0.578·33-s + 0.0522·37-s − 1.74·39-s − 1.04·41-s + 0.507·43-s − 0.145·45-s + 0.965·47-s + 1.29·51-s + 1.31·53-s − 0.792·55-s + 0.985·57-s − 0.937·59-s − 0.541·61-s + 2.39·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(392\)    =    \(2^{3} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(62.8704\)
Root analytic conductor: \(7.92908\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 392,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 14.6T + 243T^{2} \)
5 \( 1 - 72.1T + 3.12e3T^{2} \)
11 \( 1 + 246.T + 1.61e5T^{2} \)
13 \( 1 - 1.13e3T + 3.71e5T^{2} \)
17 \( 1 + 1.64e3T + 1.41e6T^{2} \)
19 \( 1 + 1.64e3T + 2.47e6T^{2} \)
23 \( 1 + 469.T + 6.43e6T^{2} \)
29 \( 1 - 5.81e3T + 2.05e7T^{2} \)
31 \( 1 + 5.73e3T + 2.86e7T^{2} \)
37 \( 1 - 435.T + 6.93e7T^{2} \)
41 \( 1 + 1.12e4T + 1.15e8T^{2} \)
43 \( 1 - 6.14e3T + 1.47e8T^{2} \)
47 \( 1 - 1.46e4T + 2.29e8T^{2} \)
53 \( 1 - 2.68e4T + 4.18e8T^{2} \)
59 \( 1 + 2.50e4T + 7.14e8T^{2} \)
61 \( 1 + 1.57e4T + 8.44e8T^{2} \)
67 \( 1 - 2.02e4T + 1.35e9T^{2} \)
71 \( 1 + 6.95e4T + 1.80e9T^{2} \)
73 \( 1 + 1.04e4T + 2.07e9T^{2} \)
79 \( 1 + 9.04e4T + 3.07e9T^{2} \)
83 \( 1 + 3.08e4T + 3.93e9T^{2} \)
89 \( 1 - 1.64e4T + 5.58e9T^{2} \)
97 \( 1 + 1.03e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47475033261529624731123684346, −9.028995435026990090771893721826, −8.456130282123192153075262108845, −6.74530861250653223330930017911, −6.09330184313754388334766122942, −5.47419455080797805579511735418, −4.24975838161690584905367343796, −2.60510593734887236196278127738, −1.42555878854647274772050253411, 0, 1.42555878854647274772050253411, 2.60510593734887236196278127738, 4.24975838161690584905367343796, 5.47419455080797805579511735418, 6.09330184313754388334766122942, 6.74530861250653223330930017911, 8.456130282123192153075262108845, 9.028995435026990090771893721826, 10.47475033261529624731123684346

Graph of the $Z$-function along the critical line