L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.866 + 0.5i)3-s + (−0.499 + 0.866i)4-s + (−1.40 + 1.74i)5-s + (0.866 + 0.499i)6-s + (0.763 − 1.32i)7-s + 0.999·8-s + (0.499 − 0.866i)9-s + (2.20 + 0.341i)10-s + (−1.14 + 0.658i)11-s − 0.999i·12-s + (−2.41 − 2.67i)13-s − 1.52·14-s + (0.341 − 2.20i)15-s + (−0.5 − 0.866i)16-s + (−1.35 − 0.784i)17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.499 + 0.288i)3-s + (−0.249 + 0.433i)4-s + (−0.626 + 0.779i)5-s + (0.353 + 0.204i)6-s + (0.288 − 0.500i)7-s + 0.353·8-s + (0.166 − 0.288i)9-s + (0.698 + 0.107i)10-s + (−0.343 + 0.198i)11-s − 0.288i·12-s + (−0.669 − 0.743i)13-s − 0.408·14-s + (0.0881 − 0.570i)15-s + (−0.125 − 0.216i)16-s + (−0.329 − 0.190i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0431i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00260065 - 0.120464i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00260065 - 0.120464i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 + (1.40 - 1.74i)T \) |
| 13 | \( 1 + (2.41 + 2.67i)T \) |
good | 7 | \( 1 + (-0.763 + 1.32i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.14 - 0.658i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.35 + 0.784i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (4.18 + 2.41i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (7.31 - 4.22i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.21 + 3.83i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.62iT - 31T^{2} \) |
| 37 | \( 1 + (1.40 + 2.42i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.35 + 0.784i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.58 + 2.64i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 4.94T + 47T^{2} \) |
| 53 | \( 1 - 13.9iT - 53T^{2} \) |
| 59 | \( 1 + (9.07 + 5.23i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.49 + 4.31i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.38 - 2.40i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (12.8 + 7.41i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 5.98T + 73T^{2} \) |
| 79 | \( 1 - 4.87T + 79T^{2} \) |
| 83 | \( 1 + 6.39T + 83T^{2} \) |
| 89 | \( 1 + (-15.9 + 9.22i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.963 + 1.66i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69828379023047902005591499702, −10.35038391903440742036432114115, −9.281731652915662482056542428090, −7.906768255879227016561258004904, −7.38642100872948476753915520279, −6.08033855743982567999917182076, −4.65734861543605155150689208007, −3.74696942820947032660676397892, −2.36830862471692709465186895584, −0.090665345169537599148485362180,
1.90799401330257764817075776668, 4.17498601084046590795204903081, 5.07956772086142877876269106962, 6.08951766644698392897000698343, 7.11493810122828457372209774057, 8.192364334362207975955397008510, 8.668606292457108568831127969564, 9.852070351727496076910610868890, 10.86613220417268427493445178046, 11.90271413797703094440347556638