L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.965 + 0.258i)3-s + (0.499 − 0.866i)4-s + (1.64 + 1.50i)5-s + (−0.965 + 0.258i)6-s + (−1.56 + 2.70i)7-s + 0.999i·8-s + (0.866 + 0.499i)9-s + (−2.18 − 0.482i)10-s + (0.628 + 0.168i)11-s + (0.707 − 0.707i)12-s + (−3.13 + 1.78i)13-s − 3.12i·14-s + (1.20 + 1.88i)15-s + (−0.5 − 0.866i)16-s + (−0.0226 − 0.0844i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.557 + 0.149i)3-s + (0.249 − 0.433i)4-s + (0.737 + 0.674i)5-s + (−0.394 + 0.105i)6-s + (−0.589 + 1.02i)7-s + 0.353i·8-s + (0.288 + 0.166i)9-s + (−0.690 − 0.152i)10-s + (0.189 + 0.0507i)11-s + (0.204 − 0.204i)12-s + (−0.868 + 0.495i)13-s − 0.834i·14-s + (0.310 + 0.486i)15-s + (−0.125 − 0.216i)16-s + (−0.00548 − 0.0204i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.108 - 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.108 - 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.823721 + 0.918109i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.823721 + 0.918109i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (-0.965 - 0.258i)T \) |
| 5 | \( 1 + (-1.64 - 1.50i)T \) |
| 13 | \( 1 + (3.13 - 1.78i)T \) |
good | 7 | \( 1 + (1.56 - 2.70i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.628 - 0.168i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 + (0.0226 + 0.0844i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-0.264 - 0.986i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.611 + 2.28i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-7.96 + 4.59i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.40 + 1.40i)T + 31iT^{2} \) |
| 37 | \( 1 + (-3.80 - 6.58i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.901 - 3.36i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (9.73 - 2.60i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 - 4.74T + 47T^{2} \) |
| 53 | \( 1 + (-6.10 + 6.10i)T - 53iT^{2} \) |
| 59 | \( 1 + (12.7 - 3.42i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-3.40 + 5.89i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.39 + 5.42i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-13.0 + 3.48i)T + (61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 - 2.45iT - 73T^{2} \) |
| 79 | \( 1 + 10.4iT - 79T^{2} \) |
| 83 | \( 1 - 1.51T + 83T^{2} \) |
| 89 | \( 1 + (-4.84 + 18.0i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-4.43 - 2.55i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.45967626246842961358054721038, −10.16455774493394015763813594623, −9.719944904925127036462147976651, −8.947581812776139326364711342316, −7.969958690335186330444253804484, −6.75853327067023159897647382951, −6.15532433494367660226896008412, −4.86255608339410565344452880213, −3.02205165488721833084930689013, −2.11159802674323062282264667645,
0.969366924413690423518343123371, 2.50184291955474764851707256140, 3.78562168520669425983581687602, 5.13192453664950742565873184890, 6.61477567749658813170118142691, 7.43083071355733957813287781319, 8.486528631575719018215697593909, 9.344794532942762770992532070341, 10.03197427611681844145907332642, 10.71036990976981896817827824817