| L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1 − 1.41i)3-s − 1.00i·4-s + (0.707 − 0.707i)5-s + (1.70 + 0.292i)6-s + (2 − 2i)7-s + (0.707 + 0.707i)8-s + (−1.00 + 2.82i)9-s + 1.00i·10-s + (−4.24 − 4.24i)11-s + (−1.41 + 1.00i)12-s + (3 + 2i)13-s + 2.82i·14-s + (−1.70 − 0.292i)15-s − 1.00·16-s − 1.41·17-s + ⋯ |
| L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.577 − 0.816i)3-s − 0.500i·4-s + (0.316 − 0.316i)5-s + (0.696 + 0.119i)6-s + (0.755 − 0.755i)7-s + (0.250 + 0.250i)8-s + (−0.333 + 0.942i)9-s + 0.316i·10-s + (−1.27 − 1.27i)11-s + (−0.408 + 0.288i)12-s + (0.832 + 0.554i)13-s + 0.755i·14-s + (−0.440 − 0.0756i)15-s − 0.250·16-s − 0.342·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.263 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.263 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.459903 - 0.602298i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.459903 - 0.602298i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (1 + 1.41i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 13 | \( 1 + (-3 - 2i)T \) |
| good | 7 | \( 1 + (-2 + 2i)T - 7iT^{2} \) |
| 11 | \( 1 + (4.24 + 4.24i)T + 11iT^{2} \) |
| 17 | \( 1 + 1.41T + 17T^{2} \) |
| 19 | \( 1 + 19iT^{2} \) |
| 23 | \( 1 + 4.24T + 23T^{2} \) |
| 29 | \( 1 + 9.89iT - 29T^{2} \) |
| 31 | \( 1 + (7 + 7i)T + 31iT^{2} \) |
| 37 | \( 1 + (-3 + 3i)T - 37iT^{2} \) |
| 41 | \( 1 + (1.41 - 1.41i)T - 41iT^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + (-4.24 - 4.24i)T + 47iT^{2} \) |
| 53 | \( 1 - 5.65iT - 53T^{2} \) |
| 59 | \( 1 + (-8.48 - 8.48i)T + 59iT^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + (-3 - 3i)T + 67iT^{2} \) |
| 71 | \( 1 + (-2.82 + 2.82i)T - 71iT^{2} \) |
| 73 | \( 1 - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-8.48 + 8.48i)T - 83iT^{2} \) |
| 89 | \( 1 + (7.07 + 7.07i)T + 89iT^{2} \) |
| 97 | \( 1 + (-8 - 8i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.02716662045344635445178170472, −10.34331659010977287136921900380, −8.948755137902126905091898159084, −7.985667336992610258544414068342, −7.55815401452421260589109160576, −6.12902095355161620761522031492, −5.66861025905782657992801058871, −4.32237017230639587145641179790, −2.11602835823495382303226409215, −0.62798853802220257887368018721,
1.97109278796746556937353066664, 3.35581357064405588198968368215, 4.84344528957901258815161864057, 5.52988762381361528154090112068, 6.91077959633222294199376639543, 8.151527824217868199772553082084, 8.994616916909919245167610318688, 10.01245442307718603735429245999, 10.63212011541805402165490492033, 11.25861704772592081600161796259