| L(s) = 1 | + (0.707 + 0.707i)2-s + (−1 − 1.41i)3-s + 1.00i·4-s + (−0.707 − 0.707i)5-s + (0.292 − 1.70i)6-s + (2 + 2i)7-s + (−0.707 + 0.707i)8-s + (−1.00 + 2.82i)9-s − 1.00i·10-s + (4.24 − 4.24i)11-s + (1.41 − 1.00i)12-s + (3 − 2i)13-s + 2.82i·14-s + (−0.292 + 1.70i)15-s − 1.00·16-s + 1.41·17-s + ⋯ |
| L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.577 − 0.816i)3-s + 0.500i·4-s + (−0.316 − 0.316i)5-s + (0.119 − 0.696i)6-s + (0.755 + 0.755i)7-s + (−0.250 + 0.250i)8-s + (−0.333 + 0.942i)9-s − 0.316i·10-s + (1.27 − 1.27i)11-s + (0.408 − 0.288i)12-s + (0.832 − 0.554i)13-s + 0.755i·14-s + (−0.0756 + 0.440i)15-s − 0.250·16-s + 0.342·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0732i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 + 0.0732i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.59472 - 0.0584830i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.59472 - 0.0584830i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (1 + 1.41i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 13 | \( 1 + (-3 + 2i)T \) |
| good | 7 | \( 1 + (-2 - 2i)T + 7iT^{2} \) |
| 11 | \( 1 + (-4.24 + 4.24i)T - 11iT^{2} \) |
| 17 | \( 1 - 1.41T + 17T^{2} \) |
| 19 | \( 1 - 19iT^{2} \) |
| 23 | \( 1 - 4.24T + 23T^{2} \) |
| 29 | \( 1 + 9.89iT - 29T^{2} \) |
| 31 | \( 1 + (7 - 7i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1.41 - 1.41i)T + 41iT^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (4.24 - 4.24i)T - 47iT^{2} \) |
| 53 | \( 1 - 5.65iT - 53T^{2} \) |
| 59 | \( 1 + (8.48 - 8.48i)T - 59iT^{2} \) |
| 61 | \( 1 + 10T + 61T^{2} \) |
| 67 | \( 1 + (-3 + 3i)T - 67iT^{2} \) |
| 71 | \( 1 + (2.82 + 2.82i)T + 71iT^{2} \) |
| 73 | \( 1 + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (8.48 + 8.48i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.07 + 7.07i)T - 89iT^{2} \) |
| 97 | \( 1 + (-8 + 8i)T - 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.50364811454564299489628071326, −10.93131159631148556807031474602, −9.021155151199791170859840503911, −8.363162985115952666932544065208, −7.55257768606524366706760087608, −6.23390578994260495613547511873, −5.78129055427179953965725591339, −4.64259234660912567148835955648, −3.18681555762922422595595509476, −1.28122852765509102806085250010,
1.48187566224242678566983793566, 3.61449116945841644620462352411, 4.23245917246151748589438039087, 5.15916527899641744449944928843, 6.49977554905428867559751523115, 7.31448936927655334657759213355, 8.945406334705812799810930837197, 9.674167814606515977652943151133, 10.80749955311754702146434771750, 11.15999334653085802959432225128