L(s) = 1 | + (0.258 − 0.965i)2-s + (1.70 − 0.326i)3-s + (−0.866 − 0.499i)4-s + (2.00 − 0.995i)5-s + (0.125 − 1.72i)6-s + (0.991 − 0.265i)7-s + (−0.707 + 0.707i)8-s + (2.78 − 1.10i)9-s + (−0.443 − 2.19i)10-s + (−1.65 + 6.15i)11-s + (−1.63 − 0.568i)12-s + (3.21 − 1.63i)13-s − 1.02i·14-s + (3.08 − 2.34i)15-s + (0.500 + 0.866i)16-s + (−5.23 − 3.02i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (0.982 − 0.188i)3-s + (−0.433 − 0.249i)4-s + (0.895 − 0.445i)5-s + (0.0511 − 0.705i)6-s + (0.374 − 0.100i)7-s + (−0.249 + 0.249i)8-s + (0.929 − 0.369i)9-s + (−0.140 − 0.693i)10-s + (−0.497 + 1.85i)11-s + (−0.472 − 0.164i)12-s + (0.890 − 0.454i)13-s − 0.274i·14-s + (0.795 − 0.605i)15-s + (0.125 + 0.216i)16-s + (−1.26 − 0.732i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.367 + 0.930i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.367 + 0.930i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.83636 - 1.24936i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.83636 - 1.24936i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (-1.70 + 0.326i)T \) |
| 5 | \( 1 + (-2.00 + 0.995i)T \) |
| 13 | \( 1 + (-3.21 + 1.63i)T \) |
good | 7 | \( 1 + (-0.991 + 0.265i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (1.65 - 6.15i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (5.23 + 3.02i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.34 - 1.69i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (1.26 - 0.728i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.41 - 2.54i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.46 - 1.46i)T + 31iT^{2} \) |
| 37 | \( 1 + (-1.76 + 6.57i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (-2.67 - 0.717i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (1.80 - 3.13i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.16 + 5.16i)T - 47iT^{2} \) |
| 53 | \( 1 + 8.98T + 53T^{2} \) |
| 59 | \( 1 + (-3.52 + 0.943i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (4.69 - 8.12i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.04 + 2.15i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-0.360 - 1.34i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (-8.65 - 8.65i)T + 73iT^{2} \) |
| 79 | \( 1 - 6.23T + 79T^{2} \) |
| 83 | \( 1 + (-5.68 - 5.68i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.95 + 11.0i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-1.09 - 4.10i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95019046711579734349503740518, −10.16664931141149103966857438684, −9.342855804216607603650653071175, −8.649395881354740846181500098030, −7.56467815620799433508965463932, −6.38388085319775645917042297432, −4.91718569401558101548509093872, −4.11893029690092073543851182399, −2.43575574466493050935552719158, −1.73275675457414174100411324974,
2.10087236619864478459828796984, 3.39480049296547300757264247070, 4.55817202009794314806506799817, 6.01631901136381505511455386219, 6.53338694108585838943490415793, 8.041707679816667948049156745653, 8.612085011671996706635649675513, 9.304071563158327793904576001304, 10.66206276670407625096858373549, 11.10004504681693003940049436584