L(s) = 1 | + (0.258 − 0.965i)2-s + (−1.05 − 1.37i)3-s + (−0.866 − 0.499i)4-s + (1.49 + 1.66i)5-s + (−1.59 + 0.667i)6-s + (−4.36 + 1.16i)7-s + (−0.707 + 0.707i)8-s + (−0.758 + 2.90i)9-s + (1.99 − 1.01i)10-s + (−1.26 + 4.71i)11-s + (0.231 + 1.71i)12-s + (−2.81 − 2.25i)13-s + 4.51i·14-s + (0.692 − 3.81i)15-s + (0.500 + 0.866i)16-s + (−2.59 − 1.49i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (−0.611 − 0.791i)3-s + (−0.433 − 0.249i)4-s + (0.669 + 0.742i)5-s + (−0.652 + 0.272i)6-s + (−1.64 + 0.441i)7-s + (−0.249 + 0.249i)8-s + (−0.252 + 0.967i)9-s + (0.629 − 0.321i)10-s + (−0.381 + 1.42i)11-s + (0.0667 + 0.495i)12-s + (−0.780 − 0.624i)13-s + 1.20i·14-s + (0.178 − 0.983i)15-s + (0.125 + 0.216i)16-s + (−0.629 − 0.363i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0309 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0309 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.233644 + 0.226533i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.233644 + 0.226533i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 3 | \( 1 + (1.05 + 1.37i)T \) |
| 5 | \( 1 + (-1.49 - 1.66i)T \) |
| 13 | \( 1 + (2.81 + 2.25i)T \) |
good | 7 | \( 1 + (4.36 - 1.16i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (1.26 - 4.71i)T + (-9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + (2.59 + 1.49i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.54 - 0.681i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (-0.563 + 0.325i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-6.65 + 3.84i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.43 + 4.43i)T + 31iT^{2} \) |
| 37 | \( 1 + (2.35 - 8.79i)T + (-32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + (1.58 + 0.425i)T + (35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-2.34 + 4.05i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.70 - 5.70i)T - 47iT^{2} \) |
| 53 | \( 1 - 7.06T + 53T^{2} \) |
| 59 | \( 1 + (3.39 - 0.908i)T + (51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (5.24 - 9.07i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.9 + 3.46i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (1.11 + 4.17i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (1.09 + 1.09i)T + 73iT^{2} \) |
| 79 | \( 1 + 0.529T + 79T^{2} \) |
| 83 | \( 1 + (0.150 + 0.150i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.02 + 7.53i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-3.09 - 11.5i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.76836089049333461862817936077, −10.36892262648850742650718294695, −10.13754569663056574216310138040, −9.137889943352302898548774549151, −7.51676177145272388290463035210, −6.64943749595406589296073065374, −5.93301281789661533786047899346, −4.75710319768491544167021489427, −2.89669670796148207475171387363, −2.19810777267828559113852266764,
0.20124356959612591537355705254, 3.16379568745668297144421870422, 4.31162695678183181295536254315, 5.39028209191190052369951475795, 6.22033282380624821947445243489, 6.88515595897144232843195298129, 8.672765065755589522597854038743, 9.176061841121714734627287680863, 10.09815744367378832850300342934, 10.83542806881195064261418119150