| L(s) = 1 | + (0.707 − 0.707i)2-s + (1.41 − i)3-s − 1.00i·4-s + (−0.707 + 2.12i)5-s + (0.292 − 1.70i)6-s + (3.41 + 3.41i)7-s + (−0.707 − 0.707i)8-s + (1.00 − 2.82i)9-s + (0.999 + 2i)10-s − 4i·11-s + (−1.00 − 1.41i)12-s + (0.707 − 0.707i)13-s + 4.82·14-s + (1.12 + 3.70i)15-s − 1.00·16-s + (−3 + 3i)17-s + ⋯ |
| L(s) = 1 | + (0.499 − 0.499i)2-s + (0.816 − 0.577i)3-s − 0.500i·4-s + (−0.316 + 0.948i)5-s + (0.119 − 0.696i)6-s + (1.29 + 1.29i)7-s + (−0.250 − 0.250i)8-s + (0.333 − 0.942i)9-s + (0.316 + 0.632i)10-s − 1.20i·11-s + (−0.288 − 0.408i)12-s + (0.196 − 0.196i)13-s + 1.29·14-s + (0.289 + 0.957i)15-s − 0.250·16-s + (−0.727 + 0.727i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.749 + 0.662i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.19311 - 0.829868i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.19311 - 0.829868i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1.41 + i)T \) |
| 5 | \( 1 + (0.707 - 2.12i)T \) |
| 13 | \( 1 + (-0.707 + 0.707i)T \) |
| good | 7 | \( 1 + (-3.41 - 3.41i)T + 7iT^{2} \) |
| 11 | \( 1 + 4iT - 11T^{2} \) |
| 17 | \( 1 + (3 - 3i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.17iT - 19T^{2} \) |
| 23 | \( 1 + (-2.82 - 2.82i)T + 23iT^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 - 0.585T + 31T^{2} \) |
| 37 | \( 1 + (5.41 + 5.41i)T + 37iT^{2} \) |
| 41 | \( 1 + 2iT - 41T^{2} \) |
| 43 | \( 1 + (7.24 - 7.24i)T - 43iT^{2} \) |
| 47 | \( 1 + (-6.24 + 6.24i)T - 47iT^{2} \) |
| 53 | \( 1 + (-3.41 - 3.41i)T + 53iT^{2} \) |
| 59 | \( 1 + 12.4T + 59T^{2} \) |
| 61 | \( 1 + 0.828T + 61T^{2} \) |
| 67 | \( 1 + (-4.82 - 4.82i)T + 67iT^{2} \) |
| 71 | \( 1 - 5.75iT - 71T^{2} \) |
| 73 | \( 1 + (-3.07 + 3.07i)T - 73iT^{2} \) |
| 79 | \( 1 - 4.48iT - 79T^{2} \) |
| 83 | \( 1 + (1.17 + 1.17i)T + 83iT^{2} \) |
| 89 | \( 1 - 16.8T + 89T^{2} \) |
| 97 | \( 1 + (5.07 + 5.07i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33107079060415504418538585469, −10.68999849366436104053427939763, −9.136049092186417301058590747544, −8.503112460212929820745317400306, −7.59411723170592654912278126469, −6.35229711959332705653023720912, −5.42836640169361616246243333882, −3.84458850088418531275537707719, −2.82863775180042371616231667831, −1.82401360944476889042286792134,
1.81780717236730009860813051572, 3.76758878223743538022469706662, 4.64478318045562385908415818609, 4.96910290928954594616479780744, 7.05364071541796512982191358165, 7.68985478775935287237194826593, 8.507049963732655248336915482686, 9.389391070794083706329646729479, 10.51110583168260453981805279624, 11.41627581750830790389237105383