Properties

Label 2-390-13.3-c1-0-1
Degree $2$
Conductor $390$
Sign $-0.522 - 0.852i$
Analytic cond. $3.11416$
Root an. cond. $1.76469$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s − 5-s + (0.499 − 0.866i)6-s + (−1 + 1.73i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (1.5 + 2.59i)11-s + 0.999·12-s + (1 + 3.46i)13-s − 1.99·14-s + (0.5 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (−3 + 5.19i)17-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s − 0.447·5-s + (0.204 − 0.353i)6-s + (−0.377 + 0.654i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (0.452 + 0.783i)11-s + 0.288·12-s + (0.277 + 0.960i)13-s − 0.534·14-s + (0.129 + 0.223i)15-s + (−0.125 − 0.216i)16-s + (−0.727 + 1.26i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.522 - 0.852i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.522 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(390\)    =    \(2 \cdot 3 \cdot 5 \cdot 13\)
Sign: $-0.522 - 0.852i$
Analytic conductor: \(3.11416\)
Root analytic conductor: \(1.76469\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{390} (211, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 390,\ (\ :1/2),\ -0.522 - 0.852i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.507292 + 0.905270i\)
\(L(\frac12)\) \(\approx\) \(0.507292 + 0.905270i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (0.5 + 0.866i)T \)
5 \( 1 + T \)
13 \( 1 + (-1 - 3.46i)T \)
good7 \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1 - 1.73i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.5 + 2.59i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (1.5 + 2.59i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 5T + 31T^{2} \)
37 \( 1 + (-3.5 - 6.06i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-0.5 + 0.866i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 3T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + (-4.5 + 7.79i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1 - 1.73i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (4 + 6.92i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-6 + 10.3i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 - 14T + 73T^{2} \)
79 \( 1 - 5T + 79T^{2} \)
83 \( 1 + 6T + 83T^{2} \)
89 \( 1 + (-9 - 15.5i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (7 - 12.1i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.96944610607688778078428759617, −10.90991853717775339703645437444, −9.622572204555609002449250470717, −8.635148008272364352953788854516, −7.84728978776286866496109652816, −6.53013638269595034694844747068, −6.31237324362766398925068540961, −4.79401916991276547970907600770, −3.82812242145949558112533456870, −2.07628193268206550603131263378, 0.63982262903304676713432413512, 2.95818843219766714789245127920, 3.87027621141971682060981747355, 4.89815927260507181081287632967, 6.03193150472206187242001455192, 7.12876347208133567332506338069, 8.422951998527558142078668580528, 9.414998819847251517887214349947, 10.27225866606502018973349429060, 11.18470672148175451806721444570

Graph of the $Z$-function along the critical line