L(s) = 1 | − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s + 9-s + 10-s − 12-s − 13-s + 15-s + 16-s − 6·17-s − 18-s − 20-s − 4·23-s + 24-s + 25-s + 26-s − 27-s − 10·29-s − 30-s − 32-s + 6·34-s + 36-s − 6·37-s + 39-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.288·12-s − 0.277·13-s + 0.258·15-s + 1/4·16-s − 1.45·17-s − 0.235·18-s − 0.223·20-s − 0.834·23-s + 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s − 1.85·29-s − 0.182·30-s − 0.176·32-s + 1.02·34-s + 1/6·36-s − 0.986·37-s + 0.160·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + T \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 10 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 + 6 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 6 T + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 - 4 T + p T^{2} \) |
| 71 | \( 1 - 16 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 - 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.99019785051140937532808495638, −9.954657556925906330787615955302, −9.074224045302095177064838582083, −8.072251512020700899711976441689, −7.13489552716111364035097044906, −6.27139115246731968799115000690, −5.02996251545709838502394177698, −3.75949148792159340735853491565, −2.01716871449082204952154497689, 0,
2.01716871449082204952154497689, 3.75949148792159340735853491565, 5.02996251545709838502394177698, 6.27139115246731968799115000690, 7.13489552716111364035097044906, 8.072251512020700899711976441689, 9.074224045302095177064838582083, 9.954657556925906330787615955302, 10.99019785051140937532808495638