L(s) = 1 | − 5.19·3-s + 8i·4-s + (−25.5 + 25.5i)7-s + 27·9-s − 41.5i·12-s + (31.1 − 35i)13-s − 64·16-s + (49.9 + 49.9i)19-s + (132. − 132. i)21-s + 125i·25-s − 140.·27-s + (−204. − 204. i)28-s + (231. + 231. i)31-s + 216i·36-s + (−163. + 163. i)37-s + ⋯ |
L(s) = 1 | − 1.00·3-s + i·4-s + (−1.38 + 1.38i)7-s + 9-s − 0.999i·12-s + (0.665 − 0.746i)13-s − 16-s + (0.603 + 0.603i)19-s + (1.38 − 1.38i)21-s + i·25-s − 1.00·27-s + (−1.38 − 1.38i)28-s + (1.34 + 1.34i)31-s + i·36-s + (−0.725 + 0.725i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.521 - 0.852i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.521 - 0.852i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.336299 + 0.600030i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.336299 + 0.600030i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 5.19T \) |
| 13 | \( 1 + (-31.1 + 35i)T \) |
good | 2 | \( 1 - 8iT^{2} \) |
| 5 | \( 1 - 125iT^{2} \) |
| 7 | \( 1 + (25.5 - 25.5i)T - 343iT^{2} \) |
| 11 | \( 1 + 1.33e3iT^{2} \) |
| 17 | \( 1 + 4.91e3T^{2} \) |
| 19 | \( 1 + (-49.9 - 49.9i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + 1.21e4T^{2} \) |
| 29 | \( 1 - 2.43e4T^{2} \) |
| 31 | \( 1 + (-231. - 231. i)T + 2.97e4iT^{2} \) |
| 37 | \( 1 + (163. - 163. i)T - 5.06e4iT^{2} \) |
| 41 | \( 1 - 6.89e4iT^{2} \) |
| 43 | \( 1 + 218. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 1.03e5iT^{2} \) |
| 53 | \( 1 - 1.48e5T^{2} \) |
| 59 | \( 1 + 2.05e5iT^{2} \) |
| 61 | \( 1 - 935.T + 2.26e5T^{2} \) |
| 67 | \( 1 + (-112. - 112. i)T + 3.00e5iT^{2} \) |
| 71 | \( 1 - 3.57e5iT^{2} \) |
| 73 | \( 1 + (407. - 407. i)T - 3.89e5iT^{2} \) |
| 79 | \( 1 + 1.09e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 5.71e5iT^{2} \) |
| 89 | \( 1 + 7.04e5iT^{2} \) |
| 97 | \( 1 + (-20.8 - 20.8i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.01574432766853867475195726766, −15.61816686332591610876954141705, −13.25731912265037693548921827382, −12.45585653964159330141840146826, −11.67247590116403927743192449948, −10.01009997448948708431825629532, −8.601769481558970937853468140015, −6.82179053380510227777450328860, −5.55138954005615592418663929417, −3.28808317311945961300263030970,
0.66419974701740016513030352077, 4.29787692687587276082604923756, 6.12679362412166326822274238597, 6.96658573105494420842171104876, 9.606147852636555739952188230441, 10.38085660668039823711397929570, 11.47602965085814111631916940223, 13.11492955502056318331339053989, 13.95877025949219821621648341835, 15.74919646684040088193110665381