L(s) = 1 | + (0.5 + 0.866i)2-s + (−1.5 − 2.59i)3-s + (3.5 − 6.06i)4-s + 7·5-s + (1.5 − 2.59i)6-s + (5 − 8.66i)7-s + 15·8-s + (−4.5 + 7.79i)9-s + (3.5 + 6.06i)10-s + (11 + 19.0i)11-s − 21·12-s + (−45.5 + 11.2i)13-s + 10·14-s + (−10.5 − 18.1i)15-s + (−20.5 − 35.5i)16-s + (−18.5 + 32.0i)17-s + ⋯ |
L(s) = 1 | + (0.176 + 0.306i)2-s + (−0.288 − 0.499i)3-s + (0.437 − 0.757i)4-s + 0.626·5-s + (0.102 − 0.176i)6-s + (0.269 − 0.467i)7-s + 0.662·8-s + (−0.166 + 0.288i)9-s + (0.110 + 0.191i)10-s + (0.301 + 0.522i)11-s − 0.505·12-s + (−0.970 + 0.240i)13-s + 0.190·14-s + (−0.180 − 0.313i)15-s + (−0.320 − 0.554i)16-s + (−0.263 + 0.457i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.46054 - 0.401407i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46054 - 0.401407i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 + 2.59i)T \) |
| 13 | \( 1 + (45.5 - 11.2i)T \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 - 7T + 125T^{2} \) |
| 7 | \( 1 + (-5 + 8.66i)T + (-171.5 - 297. i)T^{2} \) |
| 11 | \( 1 + (-11 - 19.0i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 17 | \( 1 + (18.5 - 32.0i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (15 - 25.9i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-81 - 140. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-56.5 - 97.8i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 196T + 2.97e4T^{2} \) |
| 37 | \( 1 + (6.5 + 11.2i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + (142.5 + 246. i)T + (-3.44e4 + 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-123 + 213. i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 462T + 1.03e5T^{2} \) |
| 53 | \( 1 + 537T + 1.48e5T^{2} \) |
| 59 | \( 1 + (288 - 498. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-317.5 + 549. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (101 + 174. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-543 + 940. i)T + (-1.78e5 - 3.09e5i)T^{2} \) |
| 73 | \( 1 + 805T + 3.89e5T^{2} \) |
| 79 | \( 1 - 884T + 4.93e5T^{2} \) |
| 83 | \( 1 - 518T + 5.71e5T^{2} \) |
| 89 | \( 1 + (97 + 168. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-601 + 1.04e3i)T + (-4.56e5 - 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.50660185736389799146505023790, −14.40501914791398660770265232756, −13.52441183341948312103113357095, −12.05486450592735556234436127103, −10.72958571480985644882449018400, −9.612213938687824173923577419352, −7.49195676063671437102792455199, −6.38530517900362351922164538031, −4.98122494267059200731253698901, −1.73942523488203418917004659384,
2.69121489734570904503322389083, 4.74113648188002584159266979691, 6.51087938510444781682605443790, 8.302137017093270503925324577102, 9.792001252726823010044286848286, 11.15827264771961786886357061358, 12.10452018916418862968736305427, 13.33110249511723568313264495032, 14.71065406476176879426368043299, 15.96335157320361747400818033815