Properties

Label 2-38e2-19.10-c0-0-0
Degree $2$
Conductor $1444$
Sign $0.950 - 0.309i$
Analytic cond. $0.720649$
Root an. cond. $0.848910$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.909 − 1.08i)3-s + (−0.939 − 0.342i)5-s + (−0.5 + 0.866i)7-s + (−0.173 + 0.984i)9-s + (0.5 + 0.866i)11-s + (0.483 + 1.32i)15-s + (0.173 + 0.984i)17-s + (1.39 − 0.245i)21-s + (1.39 + 0.245i)29-s + (0.483 − 1.32i)33-s + (0.766 − 0.642i)35-s − 1.41i·37-s + (0.909 + 1.08i)41-s + (0.939 + 0.342i)43-s + (0.499 − 0.866i)45-s + ⋯
L(s)  = 1  + (−0.909 − 1.08i)3-s + (−0.939 − 0.342i)5-s + (−0.5 + 0.866i)7-s + (−0.173 + 0.984i)9-s + (0.5 + 0.866i)11-s + (0.483 + 1.32i)15-s + (0.173 + 0.984i)17-s + (1.39 − 0.245i)21-s + (1.39 + 0.245i)29-s + (0.483 − 1.32i)33-s + (0.766 − 0.642i)35-s − 1.41i·37-s + (0.909 + 1.08i)41-s + (0.939 + 0.342i)43-s + (0.499 − 0.866i)45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1444 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.950 - 0.309i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1444\)    =    \(2^{2} \cdot 19^{2}\)
Sign: $0.950 - 0.309i$
Analytic conductor: \(0.720649\)
Root analytic conductor: \(0.848910\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1444} (333, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1444,\ (\ :0),\ 0.950 - 0.309i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5527035481\)
\(L(\frac12)\) \(\approx\) \(0.5527035481\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + (0.909 + 1.08i)T + (-0.173 + 0.984i)T^{2} \)
5 \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \)
7 \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \)
11 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + (-0.173 - 0.984i)T^{2} \)
17 \( 1 + (-0.173 - 0.984i)T + (-0.939 + 0.342i)T^{2} \)
23 \( 1 + (0.766 - 0.642i)T^{2} \)
29 \( 1 + (-1.39 - 0.245i)T + (0.939 + 0.342i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 + 1.41iT - T^{2} \)
41 \( 1 + (-0.909 - 1.08i)T + (-0.173 + 0.984i)T^{2} \)
43 \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \)
47 \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \)
53 \( 1 + (-0.766 + 0.642i)T^{2} \)
59 \( 1 + (1.39 - 0.245i)T + (0.939 - 0.342i)T^{2} \)
61 \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \)
67 \( 1 + (0.939 + 0.342i)T^{2} \)
71 \( 1 + (0.483 - 1.32i)T + (-0.766 - 0.642i)T^{2} \)
73 \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \)
79 \( 1 + (-0.173 + 0.984i)T^{2} \)
83 \( 1 + (-0.5 - 0.866i)T^{2} \)
89 \( 1 + (-0.173 - 0.984i)T^{2} \)
97 \( 1 + (0.939 - 0.342i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.685345587813347444910709860008, −8.871430546550454667649301731901, −7.945879951877690470074969176289, −7.34973757676725664543100045242, −6.36385363333305876303252482760, −5.96372369061554460994726869877, −4.80358021270631337859934608562, −3.88744766739949347227775719979, −2.47239845984761214581065418652, −1.18872135141460663158234252029, 0.60234090160508946529768394078, 3.05602487638446396071454604385, 3.84208467239671716717627394613, 4.47764294243128945348665231339, 5.44872590080901432395967857384, 6.40200757507579820510886989513, 7.14010723373297638118689353836, 8.040895052874293892488232812874, 9.065019587788052415263148853992, 9.907986420764233491246993007909

Graph of the $Z$-function along the critical line