L(s) = 1 | + (−1.22 − 0.707i)5-s + (−1.22 + 0.707i)11-s + (−0.5 + 0.866i)13-s − 1.41i·17-s + 19-s + (1.22 + 0.707i)23-s + (0.499 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)43-s + (0.5 − 0.866i)49-s + 1.41i·53-s + 2·55-s + (1.22 + 0.707i)59-s + (−0.5 − 0.866i)61-s + (1.22 − 0.707i)65-s + ⋯ |
L(s) = 1 | + (−1.22 − 0.707i)5-s + (−1.22 + 0.707i)11-s + (−0.5 + 0.866i)13-s − 1.41i·17-s + 19-s + (1.22 + 0.707i)23-s + (0.499 + 0.866i)25-s + (−0.5 + 0.866i)31-s + (0.5 + 0.866i)43-s + (0.5 − 0.866i)49-s + 1.41i·53-s + 2·55-s + (1.22 + 0.707i)59-s + (−0.5 − 0.866i)61-s + (1.22 − 0.707i)65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7835180262\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7835180262\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + 1.41iT - T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 - 1.41iT - T^{2} \) |
| 59 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - 1.41iT - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.795276865014899770339536343004, −7.78525653846864962527410188400, −7.39477652206918054886690704579, −6.90229989814197865001515232120, −5.36358208762661813662214256012, −5.00054722187726560962981100692, −4.31760543643979077456664762134, −3.29653685652047644422763227432, −2.44619159362145186826583967988, −1.00003197452409065119794701104,
0.55354268833888863708761740332, 2.36038333770136979914717449043, 3.22581476028159468597205959802, 3.71373542318687590120962931788, 4.85179141651602118790912110506, 5.54818110689922294056004165096, 6.40804877195447876249405847604, 7.38651317820803082682951889885, 7.77036038026482133799481634066, 8.322591865529029905212000054052