Properties

Label 2-388080-1.1-c1-0-139
Degree $2$
Conductor $388080$
Sign $1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 11-s + 6·13-s − 5·17-s − 7·19-s + 5·23-s + 25-s + 3·29-s + 6·31-s − 5·37-s − 6·41-s + 7·43-s + 11·47-s + 8·53-s − 55-s + 9·59-s + 2·61-s + 6·65-s + 8·67-s − 5·71-s + 16·73-s + 8·79-s + 6·83-s − 5·85-s − 14·89-s − 7·95-s − 3·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.301·11-s + 1.66·13-s − 1.21·17-s − 1.60·19-s + 1.04·23-s + 1/5·25-s + 0.557·29-s + 1.07·31-s − 0.821·37-s − 0.937·41-s + 1.06·43-s + 1.60·47-s + 1.09·53-s − 0.134·55-s + 1.17·59-s + 0.256·61-s + 0.744·65-s + 0.977·67-s − 0.593·71-s + 1.87·73-s + 0.900·79-s + 0.658·83-s − 0.542·85-s − 1.48·89-s − 0.718·95-s − 0.304·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.562000592\)
\(L(\frac12)\) \(\approx\) \(3.562000592\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 5 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 11 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 - 9 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 3 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55069962815813, −12.05923400621674, −11.44128887823117, −10.95810583059664, −10.68817124025859, −10.42483190468378, −9.756857767264613, −9.174731066023553, −8.729638215365476, −8.452976568960823, −8.186162919382845, −7.266789896034260, −6.822060202216536, −6.442899245184050, −6.143458079081725, −5.400159769304526, −5.120797537358688, −4.285222309103921, −4.084672715184681, −3.488037129085368, −2.697582700778273, −2.352610906764181, −1.784035280120533, −1.007480675782267, −0.5468843473576596, 0.5468843473576596, 1.007480675782267, 1.784035280120533, 2.352610906764181, 2.697582700778273, 3.488037129085368, 4.084672715184681, 4.285222309103921, 5.120797537358688, 5.400159769304526, 6.143458079081725, 6.442899245184050, 6.822060202216536, 7.266789896034260, 8.186162919382845, 8.452976568960823, 8.729638215365476, 9.174731066023553, 9.756857767264613, 10.42483190468378, 10.68817124025859, 10.95810583059664, 11.44128887823117, 12.05923400621674, 12.55069962815813

Graph of the $Z$-function along the critical line