Properties

Label 2-388080-1.1-c1-0-122
Degree $2$
Conductor $388080$
Sign $1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 11-s − 2·13-s − 4·17-s − 2·23-s + 25-s + 8·31-s − 12·37-s − 2·41-s + 12·43-s + 12·53-s + 55-s + 6·59-s − 10·61-s − 2·65-s + 8·67-s + 8·71-s + 14·79-s + 14·83-s − 4·85-s + 4·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.301·11-s − 0.554·13-s − 0.970·17-s − 0.417·23-s + 1/5·25-s + 1.43·31-s − 1.97·37-s − 0.312·41-s + 1.82·43-s + 1.64·53-s + 0.134·55-s + 0.781·59-s − 1.28·61-s − 0.248·65-s + 0.977·67-s + 0.949·71-s + 1.57·79-s + 1.53·83-s − 0.433·85-s + 0.423·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.072373845\)
\(L(\frac12)\) \(\approx\) \(3.072373845\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 12 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.39841530775433, −12.02993106476596, −11.65812012358570, −11.07440947001113, −10.50461271457210, −10.34140381094279, −9.731123148730470, −9.296047526622959, −8.833874345719638, −8.488048681557213, −7.917513314413862, −7.301333042082249, −6.997993554625338, −6.363942109475312, −6.119213429461342, −5.468984583104039, −4.850397861160412, −4.670904594910858, −3.852230613781986, −3.537271151620142, −2.752313309356631, −2.124916681560086, −2.010188821470374, −0.9625357064729423, −0.5124025848350656, 0.5124025848350656, 0.9625357064729423, 2.010188821470374, 2.124916681560086, 2.752313309356631, 3.537271151620142, 3.852230613781986, 4.670904594910858, 4.850397861160412, 5.468984583104039, 6.119213429461342, 6.363942109475312, 6.997993554625338, 7.301333042082249, 7.917513314413862, 8.488048681557213, 8.833874345719638, 9.296047526622959, 9.731123148730470, 10.34140381094279, 10.50461271457210, 11.07440947001113, 11.65812012358570, 12.02993106476596, 12.39841530775433

Graph of the $Z$-function along the critical line