Properties

Label 2-38808-1.1-c1-0-50
Degree $2$
Conductor $38808$
Sign $-1$
Analytic cond. $309.883$
Root an. cond. $17.6035$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s + 6·13-s − 3·17-s + 6·19-s − 23-s − 4·25-s − 10·29-s + 8·31-s − 2·37-s − 5·41-s + 6·43-s − 3·47-s + 6·53-s + 55-s − 8·59-s − 9·61-s − 6·65-s + 13·67-s − 12·71-s − 4·73-s + 5·79-s + 15·83-s + 3·85-s + 18·89-s − 6·95-s − 9·97-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s + 1.66·13-s − 0.727·17-s + 1.37·19-s − 0.208·23-s − 4/5·25-s − 1.85·29-s + 1.43·31-s − 0.328·37-s − 0.780·41-s + 0.914·43-s − 0.437·47-s + 0.824·53-s + 0.134·55-s − 1.04·59-s − 1.15·61-s − 0.744·65-s + 1.58·67-s − 1.42·71-s − 0.468·73-s + 0.562·79-s + 1.64·83-s + 0.325·85-s + 1.90·89-s − 0.615·95-s − 0.913·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38808\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(309.883\)
Root analytic conductor: \(17.6035\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 38808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + 3 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 + 9 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 - 15 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 + 9 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.26398425224507, −14.63109312178187, −13.75410189858345, −13.56527976107113, −13.25008320913011, −12.38081763922895, −11.87764787274937, −11.41001167478824, −10.96898462451958, −10.44347348906438, −9.762166172432881, −9.157918640311914, −8.757229518507583, −7.956036826377761, −7.740722863528215, −7.016292841399896, −6.283810928475222, −5.881288139823684, −5.199557275408612, −4.522475366127309, −3.708463363683013, −3.511279535232494, −2.581960522259632, −1.736190824880391, −1.007160933946653, 0, 1.007160933946653, 1.736190824880391, 2.581960522259632, 3.511279535232494, 3.708463363683013, 4.522475366127309, 5.199557275408612, 5.881288139823684, 6.283810928475222, 7.016292841399896, 7.740722863528215, 7.956036826377761, 8.757229518507583, 9.157918640311914, 9.762166172432881, 10.44347348906438, 10.96898462451958, 11.41001167478824, 11.87764787274937, 12.38081763922895, 13.25008320913011, 13.56527976107113, 13.75410189858345, 14.63109312178187, 15.26398425224507

Graph of the $Z$-function along the critical line