Properties

Label 2-38808-1.1-c1-0-39
Degree $2$
Conductor $38808$
Sign $-1$
Analytic cond. $309.883$
Root an. cond. $17.6035$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 11-s + 4·13-s + 2·17-s + 2·19-s − 8·23-s − 25-s + 6·29-s − 6·31-s + 2·37-s − 6·41-s + 4·43-s + 6·47-s + 14·53-s + 2·55-s − 8·59-s + 4·61-s − 8·65-s + 8·67-s − 16·71-s + 14·73-s − 4·79-s − 14·83-s − 4·85-s − 12·89-s − 4·95-s − 16·97-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.301·11-s + 1.10·13-s + 0.485·17-s + 0.458·19-s − 1.66·23-s − 1/5·25-s + 1.11·29-s − 1.07·31-s + 0.328·37-s − 0.937·41-s + 0.609·43-s + 0.875·47-s + 1.92·53-s + 0.269·55-s − 1.04·59-s + 0.512·61-s − 0.992·65-s + 0.977·67-s − 1.89·71-s + 1.63·73-s − 0.450·79-s − 1.53·83-s − 0.433·85-s − 1.27·89-s − 0.410·95-s − 1.62·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38808\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(309.883\)
Root analytic conductor: \(17.6035\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 38808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 16 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.28271061358949, −14.49151474100587, −13.99741394049233, −13.64730480244822, −12.96532694747848, −12.37618568298451, −11.89541270237327, −11.54322302434427, −10.90481172831054, −10.35735062961840, −9.908298547495290, −9.190686297670752, −8.494221166459999, −8.183667269240254, −7.610655102205576, −7.088905887221475, −6.379344933603290, −5.685960749890384, −5.365208149535944, −4.218985614598648, −4.054504968950065, −3.360501054619457, −2.643641870826612, −1.750963795755243, −0.9253537924072789, 0, 0.9253537924072789, 1.750963795755243, 2.643641870826612, 3.360501054619457, 4.054504968950065, 4.218985614598648, 5.365208149535944, 5.685960749890384, 6.379344933603290, 7.088905887221475, 7.610655102205576, 8.183667269240254, 8.494221166459999, 9.190686297670752, 9.908298547495290, 10.35735062961840, 10.90481172831054, 11.54322302434427, 11.89541270237327, 12.37618568298451, 12.96532694747848, 13.64730480244822, 13.99741394049233, 14.49151474100587, 15.28271061358949

Graph of the $Z$-function along the critical line