Properties

Label 2-38808-1.1-c1-0-15
Degree $2$
Conductor $38808$
Sign $1$
Analytic cond. $309.883$
Root an. cond. $17.6035$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 11-s − 2·13-s − 2·17-s + 4·19-s + 8·23-s − 25-s + 2·29-s + 4·31-s + 6·37-s + 6·41-s − 4·43-s − 12·47-s + 10·53-s − 2·55-s + 8·59-s − 10·61-s + 4·65-s + 4·67-s + 8·71-s + 2·73-s − 8·79-s + 12·83-s + 4·85-s + 10·89-s − 8·95-s − 10·97-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.301·11-s − 0.554·13-s − 0.485·17-s + 0.917·19-s + 1.66·23-s − 1/5·25-s + 0.371·29-s + 0.718·31-s + 0.986·37-s + 0.937·41-s − 0.609·43-s − 1.75·47-s + 1.37·53-s − 0.269·55-s + 1.04·59-s − 1.28·61-s + 0.496·65-s + 0.488·67-s + 0.949·71-s + 0.234·73-s − 0.900·79-s + 1.31·83-s + 0.433·85-s + 1.05·89-s − 0.820·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38808\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(309.883\)
Root analytic conductor: \(17.6035\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.845538392\)
\(L(\frac12)\) \(\approx\) \(1.845538392\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.91173970740452, −14.42293281658289, −13.74616240306755, −13.22140886982817, −12.77715435083191, −12.03029357880463, −11.75576066213999, −11.19290896716912, −10.80964820237757, −9.908530596775590, −9.610240113204548, −8.920520802760511, −8.388662013990599, −7.771198976069836, −7.340085079167872, −6.742324144164662, −6.230267137074299, −5.307423186502689, −4.857005021401335, −4.262739679474527, −3.580010506780156, −2.965280475442103, −2.320671204385505, −1.236503897037112, −0.5524918062657641, 0.5524918062657641, 1.236503897037112, 2.320671204385505, 2.965280475442103, 3.580010506780156, 4.262739679474527, 4.857005021401335, 5.307423186502689, 6.230267137074299, 6.742324144164662, 7.340085079167872, 7.771198976069836, 8.388662013990599, 8.920520802760511, 9.610240113204548, 9.908530596775590, 10.80964820237757, 11.19290896716912, 11.75576066213999, 12.03029357880463, 12.77715435083191, 13.22140886982817, 13.74616240306755, 14.42293281658289, 14.91173970740452

Graph of the $Z$-function along the critical line