| L(s) = 1 | − 1.61·2-s + 1.61·4-s − 0.618·5-s − 8-s + 9-s + 1.00·10-s − 1.61·11-s + 1.61·13-s − 1.61·18-s − 0.618·19-s − 1.00·20-s + 2.61·22-s + 0.618·23-s − 0.618·25-s − 2.61·26-s + 1.61·31-s + 32-s + 1.61·36-s + 1.00·38-s + 0.618·40-s − 2.61·44-s − 0.618·45-s − 1.00·46-s + 0.999·50-s + 2.61·52-s + 1.00·55-s − 2.61·62-s + ⋯ |
| L(s) = 1 | − 1.61·2-s + 1.61·4-s − 0.618·5-s − 8-s + 9-s + 1.00·10-s − 1.61·11-s + 1.61·13-s − 1.61·18-s − 0.618·19-s − 1.00·20-s + 2.61·22-s + 0.618·23-s − 0.618·25-s − 2.61·26-s + 1.61·31-s + 32-s + 1.61·36-s + 1.00·38-s + 0.618·40-s − 2.61·44-s − 0.618·45-s − 1.00·46-s + 0.999·50-s + 2.61·52-s + 1.00·55-s − 2.61·62-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5179639002\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5179639002\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 79 | \( 1 - T \) |
| good | 2 | \( 1 + 1.61T + T^{2} \) |
| 3 | \( 1 - T^{2} \) |
| 5 | \( 1 + 0.618T + T^{2} \) |
| 11 | \( 1 + 1.61T + T^{2} \) |
| 13 | \( 1 - 1.61T + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + 0.618T + T^{2} \) |
| 23 | \( 1 - 0.618T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - 1.61T + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 0.618T + T^{2} \) |
| 83 | \( 1 + 2T + T^{2} \) |
| 89 | \( 1 - 1.61T + T^{2} \) |
| 97 | \( 1 + 0.618T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.483752216984281511831028398115, −8.087689005730467510298560007433, −7.52444368932463856971907750757, −6.76349931858681190969506761185, −6.02293828762766177802572178255, −4.84582754058516930157914867655, −4.00197664824122313983798470526, −2.90615668789877121469611312661, −1.86071031013832090378576423191, −0.795087921720937410396009565130,
0.795087921720937410396009565130, 1.86071031013832090378576423191, 2.90615668789877121469611312661, 4.00197664824122313983798470526, 4.84582754058516930157914867655, 6.02293828762766177802572178255, 6.76349931858681190969506761185, 7.52444368932463856971907750757, 8.087689005730467510298560007433, 8.483752216984281511831028398115