| L(s) = 1 | + (0.809 + 1.40i)2-s + (−0.809 + 1.40i)4-s + (−0.309 − 0.535i)5-s − 0.999·8-s + (−0.5 − 0.866i)9-s + (0.499 − 0.866i)10-s + (0.809 − 1.40i)11-s − 1.61·13-s + (0.809 − 1.40i)18-s + (−0.309 − 0.535i)19-s + 0.999·20-s + 2.61·22-s + (−0.309 − 0.535i)23-s + (0.309 − 0.535i)25-s + (−1.30 − 2.26i)26-s + ⋯ |
| L(s) = 1 | + (0.809 + 1.40i)2-s + (−0.809 + 1.40i)4-s + (−0.309 − 0.535i)5-s − 0.999·8-s + (−0.5 − 0.866i)9-s + (0.499 − 0.866i)10-s + (0.809 − 1.40i)11-s − 1.61·13-s + (0.809 − 1.40i)18-s + (−0.309 − 0.535i)19-s + 0.999·20-s + 2.61·22-s + (−0.309 − 0.535i)23-s + (0.309 − 0.535i)25-s + (−1.30 − 2.26i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3871 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.471331269\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.471331269\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-0.809 - 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 3 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + 1.61T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.309 + 0.535i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.809 + 1.40i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.309 - 0.535i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - 2T + T^{2} \) |
| 89 | \( 1 + (-0.809 - 1.40i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - 0.618T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.486359616237138271319600376359, −7.86230624515440879192604485042, −7.02147080841930169026492813216, −6.31073830660997941292833676860, −5.90171824620450564999641349229, −4.94998973327039984275824247256, −4.35563152644912492675661090504, −3.59274002488400520036042299138, −2.59515710960398674045930546840, −0.62531970869581775371546194955,
1.62386949582503797664970533366, 2.30479749010096875475985333883, 3.07515285098843577488421230566, 3.93870697455737173873386735713, 4.84491414526951794160399749363, 5.07501538190120198681140174816, 6.33119099214270227200999369702, 7.29992834387653379749757531246, 7.69185436486764516030636116355, 8.918515860996151245225233778814