Properties

Label 2-38640-1.1-c1-0-2
Degree $2$
Conductor $38640$
Sign $1$
Analytic cond. $308.541$
Root an. cond. $17.5653$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 7-s + 9-s − 6·11-s − 4·13-s + 15-s + 2·17-s + 8·19-s + 21-s + 23-s + 25-s − 27-s + 2·29-s − 10·31-s + 6·33-s + 35-s + 8·37-s + 4·39-s − 2·41-s + 4·43-s − 45-s + 4·47-s + 49-s − 2·51-s + 4·53-s + 6·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s − 1.80·11-s − 1.10·13-s + 0.258·15-s + 0.485·17-s + 1.83·19-s + 0.218·21-s + 0.208·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s − 1.79·31-s + 1.04·33-s + 0.169·35-s + 1.31·37-s + 0.640·39-s − 0.312·41-s + 0.609·43-s − 0.149·45-s + 0.583·47-s + 1/7·49-s − 0.280·51-s + 0.549·53-s + 0.809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38640\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 23\)
Sign: $1$
Analytic conductor: \(308.541\)
Root analytic conductor: \(17.5653\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38640,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7359303609\)
\(L(\frac12)\) \(\approx\) \(0.7359303609\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 + T \)
23 \( 1 - T \)
good11 \( 1 + 6 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.85962342534777, −14.39212771239917, −13.69882323183922, −13.09200911621304, −12.77960709478629, −12.16294359818220, −11.78864437408695, −11.12759175092936, −10.63027345766146, −10.12197368264643, −9.604907156951331, −9.161543392580803, −8.203789417646954, −7.638808519780765, −7.393540775343823, −6.873105807338797, −5.856781704164463, −5.381132105045018, −5.123772855797373, −4.334406269471881, −3.548131354934519, −2.840429348437879, −2.401114234075180, −1.207947455887112, −0.3525776010030153, 0.3525776010030153, 1.207947455887112, 2.401114234075180, 2.840429348437879, 3.548131354934519, 4.334406269471881, 5.123772855797373, 5.381132105045018, 5.856781704164463, 6.873105807338797, 7.393540775343823, 7.638808519780765, 8.203789417646954, 9.161543392580803, 9.604907156951331, 10.12197368264643, 10.63027345766146, 11.12759175092936, 11.78864437408695, 12.16294359818220, 12.77960709478629, 13.09200911621304, 13.69882323183922, 14.39212771239917, 14.85962342534777

Graph of the $Z$-function along the critical line