L(s) = 1 | + (0.707 + 0.707i)3-s − 5-s − 1.41i·7-s + 1.00i·9-s + (−0.707 − 0.707i)15-s + (1.00 − 1.00i)21-s + 1.41·23-s + 25-s + (−0.707 + 0.707i)27-s + 1.41i·35-s − 2i·41-s + 1.41·43-s − 1.00i·45-s + 1.41·47-s − 1.00·49-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)3-s − 5-s − 1.41i·7-s + 1.00i·9-s + (−0.707 − 0.707i)15-s + (1.00 − 1.00i)21-s + 1.41·23-s + 25-s + (−0.707 + 0.707i)27-s + 1.41i·35-s − 2i·41-s + 1.41·43-s − 1.00i·45-s + 1.41·47-s − 1.00·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.391697130\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.391697130\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + T \) |
good | 7 | \( 1 + 1.41iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + 2iT - T^{2} \) |
| 43 | \( 1 - 1.41T + T^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.41T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + 1.41iT - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.774841428552050549519257302023, −7.80088564320645050970796679859, −7.40519660058103081992144492389, −6.80014998803149132875143788165, −5.42832202003097371252154260544, −4.61360348343072813955555176988, −3.96092236669099698664225630391, −3.48764252977294784069339095837, −2.47093531157134890589620554362, −0.907516935546230755221536131392,
1.12418347067374407920736451455, 2.46337935622586281392649732504, 2.96095573817742705856300078850, 3.90952483144489179310417362983, 4.88684051379152758422520559656, 5.78808989137020646873215763814, 6.60417902498538967695676089779, 7.31689532647479686569068978226, 7.996603816067804511440668886636, 8.639163022862277360086964484793