L(s) = 1 | + 15.5·3-s − 195. i·5-s − 277. i·7-s + 243·9-s − 1.75e3·11-s − 1.24e3i·13-s − 3.04e3i·15-s + 6.88e3·17-s + 4.40e3·19-s − 4.32e3i·21-s − 1.27e4i·23-s − 2.24e4·25-s + 3.78e3·27-s − 8.27e3i·29-s − 4.39e4i·31-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.56i·5-s − 0.809i·7-s + 0.333·9-s − 1.31·11-s − 0.567i·13-s − 0.901i·15-s + 1.40·17-s + 0.641·19-s − 0.467i·21-s − 1.04i·23-s − 1.43·25-s + 0.192·27-s − 0.339i·29-s − 1.47i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(1.878414408\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.878414408\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 15.5T \) |
good | 5 | \( 1 + 195. iT - 1.56e4T^{2} \) |
| 7 | \( 1 + 277. iT - 1.17e5T^{2} \) |
| 11 | \( 1 + 1.75e3T + 1.77e6T^{2} \) |
| 13 | \( 1 + 1.24e3iT - 4.82e6T^{2} \) |
| 17 | \( 1 - 6.88e3T + 2.41e7T^{2} \) |
| 19 | \( 1 - 4.40e3T + 4.70e7T^{2} \) |
| 23 | \( 1 + 1.27e4iT - 1.48e8T^{2} \) |
| 29 | \( 1 + 8.27e3iT - 5.94e8T^{2} \) |
| 31 | \( 1 + 4.39e4iT - 8.87e8T^{2} \) |
| 37 | \( 1 - 1.21e4iT - 2.56e9T^{2} \) |
| 41 | \( 1 + 5.47e4T + 4.75e9T^{2} \) |
| 43 | \( 1 - 4.54e4T + 6.32e9T^{2} \) |
| 47 | \( 1 + 1.52e5iT - 1.07e10T^{2} \) |
| 53 | \( 1 - 2.72e5iT - 2.21e10T^{2} \) |
| 59 | \( 1 + 2.13e5T + 4.21e10T^{2} \) |
| 61 | \( 1 + 8.39e4iT - 5.15e10T^{2} \) |
| 67 | \( 1 + 3.73e5T + 9.04e10T^{2} \) |
| 71 | \( 1 - 6.67e5iT - 1.28e11T^{2} \) |
| 73 | \( 1 + 3.99e5T + 1.51e11T^{2} \) |
| 79 | \( 1 - 4.35e5iT - 2.43e11T^{2} \) |
| 83 | \( 1 - 2.46e5T + 3.26e11T^{2} \) |
| 89 | \( 1 - 8.09e4T + 4.96e11T^{2} \) |
| 97 | \( 1 - 8.77e5T + 8.32e11T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.906192074040953045044080522552, −8.853670400305541944518620315208, −7.954032299567623887187175938863, −7.53171579892598423665981101924, −5.75653874990142473597925993441, −4.94318451294663136226892825170, −3.96038842548633975967313494233, −2.68338987265155135965706601989, −1.19550638133090670537848892657, −0.39642024436225865404325638332,
1.73314720480577978607540330196, 2.91985305847968993221634815183, 3.32261477761151924592233971145, 5.10713096787248333238137887286, 6.07614660951970506332105382332, 7.28209675111874094546873344442, 7.78413904783142336890477910348, 9.008935957390723786448574366867, 9.993593004250034060939826572780, 10.62199978064500283318289320716