Properties

Label 2-384-48.5-c2-0-23
Degree $2$
Conductor $384$
Sign $-0.416 + 0.909i$
Analytic cond. $10.4632$
Root an. cond. $3.23469$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.737 − 2.90i)3-s + (1.57 − 1.57i)5-s + 3.64i·7-s + (−7.91 − 4.29i)9-s + (−1.19 + 1.19i)11-s + (14.6 − 14.6i)13-s + (−3.41 − 5.74i)15-s − 28.0i·17-s + (12.5 − 12.5i)19-s + (10.6 + 2.69i)21-s − 29.2·23-s + 20.0i·25-s + (−18.3 + 19.8i)27-s + (−19.3 − 19.3i)29-s − 11.6·31-s + ⋯
L(s)  = 1  + (0.245 − 0.969i)3-s + (0.314 − 0.314i)5-s + 0.520i·7-s + (−0.878 − 0.476i)9-s + (−0.108 + 0.108i)11-s + (1.12 − 1.12i)13-s + (−0.227 − 0.382i)15-s − 1.65i·17-s + (0.662 − 0.662i)19-s + (0.504 + 0.128i)21-s − 1.27·23-s + 0.801i·25-s + (−0.678 + 0.734i)27-s + (−0.667 − 0.667i)29-s − 0.375·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.416 + 0.909i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.416 + 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $-0.416 + 0.909i$
Analytic conductor: \(10.4632\)
Root analytic conductor: \(3.23469\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (353, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1),\ -0.416 + 0.909i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.922263 - 1.43634i\)
\(L(\frac12)\) \(\approx\) \(0.922263 - 1.43634i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.737 + 2.90i)T \)
good5 \( 1 + (-1.57 + 1.57i)T - 25iT^{2} \)
7 \( 1 - 3.64iT - 49T^{2} \)
11 \( 1 + (1.19 - 1.19i)T - 121iT^{2} \)
13 \( 1 + (-14.6 + 14.6i)T - 169iT^{2} \)
17 \( 1 + 28.0iT - 289T^{2} \)
19 \( 1 + (-12.5 + 12.5i)T - 361iT^{2} \)
23 \( 1 + 29.2T + 529T^{2} \)
29 \( 1 + (19.3 + 19.3i)T + 841iT^{2} \)
31 \( 1 + 11.6T + 961T^{2} \)
37 \( 1 + (0.771 + 0.771i)T + 1.36e3iT^{2} \)
41 \( 1 - 25.6T + 1.68e3T^{2} \)
43 \( 1 + (40.5 + 40.5i)T + 1.84e3iT^{2} \)
47 \( 1 - 50.2iT - 2.20e3T^{2} \)
53 \( 1 + (-46.2 + 46.2i)T - 2.80e3iT^{2} \)
59 \( 1 + (22.7 - 22.7i)T - 3.48e3iT^{2} \)
61 \( 1 + (12.7 - 12.7i)T - 3.72e3iT^{2} \)
67 \( 1 + (-10.6 + 10.6i)T - 4.48e3iT^{2} \)
71 \( 1 - 122.T + 5.04e3T^{2} \)
73 \( 1 + 15.0iT - 5.32e3T^{2} \)
79 \( 1 - 51.3T + 6.24e3T^{2} \)
83 \( 1 + (-37.8 - 37.8i)T + 6.88e3iT^{2} \)
89 \( 1 + 5.45T + 7.92e3T^{2} \)
97 \( 1 + 81.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08063349384130832798876282656, −9.679520004886294261245621553815, −8.935115220366136828038587592240, −7.989782838021559601243023806125, −7.17236006204915873863842769188, −5.93822671321791581966521732109, −5.27868744000950179360018181496, −3.40896074562647762205375518995, −2.24952977466018928387540103187, −0.74334028281767689686945140282, 1.86535848049680853297636676708, 3.59223443223298637972701664865, 4.16815163460470363243155043612, 5.66884329216114443018242406313, 6.46699217975084073927734708070, 7.928951193153616036529206984542, 8.710673267423287234986876344004, 9.730145433034324725061427399633, 10.48273753357586877510305444312, 11.09680899247458077462354906178

Graph of the $Z$-function along the critical line