L(s) = 1 | + (−1.73 + 0.0835i)3-s + (0.431 + 0.431i)5-s − 3.10·7-s + (2.98 − 0.289i)9-s + (2.98 − 2.98i)11-s + (−2.10 − 2.10i)13-s + (−0.782 − 0.710i)15-s − 2.42i·17-s + (0.710 − 0.710i)19-s + (5.36 − 0.259i)21-s − 5.97i·23-s − 4.62i·25-s + (−5.14 + 0.749i)27-s + (2.86 − 2.86i)29-s + 0.524i·31-s + ⋯ |
L(s) = 1 | + (−0.998 + 0.0482i)3-s + (0.193 + 0.193i)5-s − 1.17·7-s + (0.995 − 0.0963i)9-s + (0.900 − 0.900i)11-s + (−0.583 − 0.583i)13-s + (−0.202 − 0.183i)15-s − 0.589i·17-s + (0.163 − 0.163i)19-s + (1.17 − 0.0565i)21-s − 1.24i·23-s − 0.925i·25-s + (−0.989 + 0.144i)27-s + (0.531 − 0.531i)29-s + 0.0941i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0993 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0993 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.534895 - 0.484166i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.534895 - 0.484166i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.73 - 0.0835i)T \) |
good | 5 | \( 1 + (-0.431 - 0.431i)T + 5iT^{2} \) |
| 7 | \( 1 + 3.10T + 7T^{2} \) |
| 11 | \( 1 + (-2.98 + 2.98i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.10 + 2.10i)T + 13iT^{2} \) |
| 17 | \( 1 + 2.42iT - 17T^{2} \) |
| 19 | \( 1 + (-0.710 + 0.710i)T - 19iT^{2} \) |
| 23 | \( 1 + 5.97iT - 23T^{2} \) |
| 29 | \( 1 + (-2.86 + 2.86i)T - 29iT^{2} \) |
| 31 | \( 1 - 0.524iT - 31T^{2} \) |
| 37 | \( 1 + (1.52 - 1.52i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.81T + 41T^{2} \) |
| 43 | \( 1 + (0.710 + 0.710i)T + 43iT^{2} \) |
| 47 | \( 1 - 7.53T + 47T^{2} \) |
| 53 | \( 1 + (8.83 + 8.83i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.0804 - 0.0804i)T - 59iT^{2} \) |
| 61 | \( 1 + (-5.72 - 5.72i)T + 61iT^{2} \) |
| 67 | \( 1 + (-0.391 + 0.391i)T - 67iT^{2} \) |
| 71 | \( 1 - 5.01iT - 71T^{2} \) |
| 73 | \( 1 - 13.4iT - 73T^{2} \) |
| 79 | \( 1 - 3.47iT - 79T^{2} \) |
| 83 | \( 1 + (-4.55 - 4.55i)T + 83iT^{2} \) |
| 89 | \( 1 + 12.5T + 89T^{2} \) |
| 97 | \( 1 + 8.67T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13415107203054131644526794436, −10.17659653543097258925556995423, −9.618143283009180310638533229704, −8.407190597383261080358880345323, −6.91203165607732151414413220438, −6.41700497918869511562420813634, −5.45757748409942254461052348513, −4.17097972430391015050659198082, −2.84114913044309593773789383027, −0.56065310157211185376996434404,
1.62264120640177571896522724276, 3.61188680304854987620891507409, 4.75421917768857325426330451083, 5.89245370937559322197688343165, 6.73489497686664171795110275033, 7.45646727919855533188772288679, 9.254319044774285272126415074659, 9.649120871106100111504567473672, 10.61432293722322195779970941879, 11.71734964525765840277776219136