L(s) = 1 | + (−2.77 + 1.13i)3-s + (6.28 + 6.28i)5-s + 1.64i·7-s + (6.43 − 6.29i)9-s + (4.75 + 4.75i)11-s + (9.35 + 9.35i)13-s + (−24.5 − 10.3i)15-s − 11.4i·17-s + (−8.58 − 8.58i)19-s + (−1.86 − 4.57i)21-s + 16.2·23-s + 54.0i·25-s + (−10.7 + 24.7i)27-s + (−10.7 + 10.7i)29-s − 6.35·31-s + ⋯ |
L(s) = 1 | + (−0.926 + 0.377i)3-s + (1.25 + 1.25i)5-s + 0.235i·7-s + (0.715 − 0.699i)9-s + (0.432 + 0.432i)11-s + (0.719 + 0.719i)13-s + (−1.63 − 0.689i)15-s − 0.675i·17-s + (−0.451 − 0.451i)19-s + (−0.0887 − 0.217i)21-s + 0.706·23-s + 2.16i·25-s + (−0.398 + 0.917i)27-s + (−0.370 + 0.370i)29-s − 0.204·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.204 - 0.978i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.204 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.970590 + 1.19480i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.970590 + 1.19480i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (2.77 - 1.13i)T \) |
good | 5 | \( 1 + (-6.28 - 6.28i)T + 25iT^{2} \) |
| 7 | \( 1 - 1.64iT - 49T^{2} \) |
| 11 | \( 1 + (-4.75 - 4.75i)T + 121iT^{2} \) |
| 13 | \( 1 + (-9.35 - 9.35i)T + 169iT^{2} \) |
| 17 | \( 1 + 11.4iT - 289T^{2} \) |
| 19 | \( 1 + (8.58 + 8.58i)T + 361iT^{2} \) |
| 23 | \( 1 - 16.2T + 529T^{2} \) |
| 29 | \( 1 + (10.7 - 10.7i)T - 841iT^{2} \) |
| 31 | \( 1 + 6.35T + 961T^{2} \) |
| 37 | \( 1 + (27.2 - 27.2i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 1.98T + 1.68e3T^{2} \) |
| 43 | \( 1 + (19.4 - 19.4i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 - 74.9iT - 2.20e3T^{2} \) |
| 53 | \( 1 + (-4.00 - 4.00i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 + (-27.9 - 27.9i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + (39.2 + 39.2i)T + 3.72e3iT^{2} \) |
| 67 | \( 1 + (68.6 + 68.6i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 40.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + 59.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 17.3T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-75.1 + 75.1i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 78.8T + 7.92e3T^{2} \) |
| 97 | \( 1 + 38.8T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11574010324981280145628713767, −10.64269310480593204295431121969, −9.626767644918521125330189236189, −9.084438170858864940302327615185, −7.12684692517980016442731945226, −6.54858708917713102962573895363, −5.77507256203536068333959101062, −4.63231053605361000194557309691, −3.15409435807700063500726740430, −1.68346271949407370012550905130,
0.820575488530630287152921197145, 1.85049573281990042813794351540, 4.03489805672819057923152171906, 5.36913533146669177007382090694, 5.79477743895559087447348902181, 6.80287054489358368335173029471, 8.231848607431426161728138185144, 8.987312386785573521929471681391, 10.13352145749883686183565810860, 10.74691411628915490332673603075