Properties

Label 2-384-48.29-c2-0-25
Degree $2$
Conductor $384$
Sign $-0.799 - 0.600i$
Analytic cond. $10.4632$
Root an. cond. $3.23469$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.99 − 0.164i)3-s + (−3.61 − 3.61i)5-s − 12.2i·7-s + (8.94 + 0.985i)9-s + (−1.76 − 1.76i)11-s + (2.38 + 2.38i)13-s + (10.2 + 11.4i)15-s + 20.0i·17-s + (−8.77 − 8.77i)19-s + (−2.02 + 36.7i)21-s − 13.1·23-s + 1.10i·25-s + (−26.6 − 4.42i)27-s + (−6.51 + 6.51i)29-s − 37.5·31-s + ⋯
L(s)  = 1  + (−0.998 − 0.0548i)3-s + (−0.722 − 0.722i)5-s − 1.75i·7-s + (0.993 + 0.109i)9-s + (−0.160 − 0.160i)11-s + (0.183 + 0.183i)13-s + (0.681 + 0.761i)15-s + 1.18i·17-s + (−0.461 − 0.461i)19-s + (−0.0962 + 1.75i)21-s − 0.573·23-s + 0.0443i·25-s + (−0.986 − 0.163i)27-s + (−0.224 + 0.224i)29-s − 1.21·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.799 - 0.600i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.799 - 0.600i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $-0.799 - 0.600i$
Analytic conductor: \(10.4632\)
Root analytic conductor: \(3.23469\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1),\ -0.799 - 0.600i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0642708 + 0.192528i\)
\(L(\frac12)\) \(\approx\) \(0.0642708 + 0.192528i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (2.99 + 0.164i)T \)
good5 \( 1 + (3.61 + 3.61i)T + 25iT^{2} \)
7 \( 1 + 12.2iT - 49T^{2} \)
11 \( 1 + (1.76 + 1.76i)T + 121iT^{2} \)
13 \( 1 + (-2.38 - 2.38i)T + 169iT^{2} \)
17 \( 1 - 20.0iT - 289T^{2} \)
19 \( 1 + (8.77 + 8.77i)T + 361iT^{2} \)
23 \( 1 + 13.1T + 529T^{2} \)
29 \( 1 + (6.51 - 6.51i)T - 841iT^{2} \)
31 \( 1 + 37.5T + 961T^{2} \)
37 \( 1 + (10.0 - 10.0i)T - 1.36e3iT^{2} \)
41 \( 1 - 4.57T + 1.68e3T^{2} \)
43 \( 1 + (-21.2 + 21.2i)T - 1.84e3iT^{2} \)
47 \( 1 - 54.8iT - 2.20e3T^{2} \)
53 \( 1 + (-21.5 - 21.5i)T + 2.80e3iT^{2} \)
59 \( 1 + (-53.6 - 53.6i)T + 3.48e3iT^{2} \)
61 \( 1 + (-19.2 - 19.2i)T + 3.72e3iT^{2} \)
67 \( 1 + (-31.5 - 31.5i)T + 4.48e3iT^{2} \)
71 \( 1 + 65.1T + 5.04e3T^{2} \)
73 \( 1 - 50.2iT - 5.32e3T^{2} \)
79 \( 1 + 20.9T + 6.24e3T^{2} \)
83 \( 1 + (-6.35 + 6.35i)T - 6.88e3iT^{2} \)
89 \( 1 + 166.T + 7.92e3T^{2} \)
97 \( 1 - 139.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73710841709031541914792566655, −9.980681339548307335078357288584, −8.581799031252382223880587519877, −7.59788730069936700239395041710, −6.85023894003593748758346205408, −5.68242492982100842600414137277, −4.34231345692722019978306476862, −3.96991202079697987600954616516, −1.30791299949714220051450139327, −0.11015270152935246468827753119, 2.22520267365275387186737136447, 3.64152261659321745023293222302, 5.09334327802218433380961184429, 5.83688729779549114835521633458, 6.85670136416466947802735264626, 7.82728066089550135997100273418, 9.003664102865743284661433669455, 9.952585083316222088414493248842, 11.05067414432846178176653848693, 11.62958212655276229267470211171

Graph of the $Z$-function along the critical line