Properties

Label 2-384-48.29-c2-0-11
Degree $2$
Conductor $384$
Sign $0.964 - 0.264i$
Analytic cond. $10.4632$
Root an. cond. $3.23469$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.50 − 2.59i)3-s + (2.59 + 2.59i)5-s + 7.30i·7-s + (−4.47 − 7.81i)9-s + (11.3 + 11.3i)11-s + (0.746 + 0.746i)13-s + (10.6 − 2.83i)15-s + 6.67i·17-s + (22.1 + 22.1i)19-s + (18.9 + 10.9i)21-s − 21.4·23-s − 11.4i·25-s + (−26.9 − 0.153i)27-s + (−1.54 + 1.54i)29-s + 14.6·31-s + ⋯
L(s)  = 1  + (0.501 − 0.865i)3-s + (0.519 + 0.519i)5-s + 1.04i·7-s + (−0.496 − 0.867i)9-s + (1.02 + 1.02i)11-s + (0.0574 + 0.0574i)13-s + (0.710 − 0.188i)15-s + 0.392i·17-s + (1.16 + 1.16i)19-s + (0.902 + 0.523i)21-s − 0.932·23-s − 0.459i·25-s + (−0.999 − 0.00567i)27-s + (−0.0531 + 0.0531i)29-s + 0.471·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.264i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.964 - 0.264i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $0.964 - 0.264i$
Analytic conductor: \(10.4632\)
Root analytic conductor: \(3.23469\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1),\ 0.964 - 0.264i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.22142 + 0.299345i\)
\(L(\frac12)\) \(\approx\) \(2.22142 + 0.299345i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.50 + 2.59i)T \)
good5 \( 1 + (-2.59 - 2.59i)T + 25iT^{2} \)
7 \( 1 - 7.30iT - 49T^{2} \)
11 \( 1 + (-11.3 - 11.3i)T + 121iT^{2} \)
13 \( 1 + (-0.746 - 0.746i)T + 169iT^{2} \)
17 \( 1 - 6.67iT - 289T^{2} \)
19 \( 1 + (-22.1 - 22.1i)T + 361iT^{2} \)
23 \( 1 + 21.4T + 529T^{2} \)
29 \( 1 + (1.54 - 1.54i)T - 841iT^{2} \)
31 \( 1 - 14.6T + 961T^{2} \)
37 \( 1 + (-50.1 + 50.1i)T - 1.36e3iT^{2} \)
41 \( 1 + 15.0T + 1.68e3T^{2} \)
43 \( 1 + (-26.3 + 26.3i)T - 1.84e3iT^{2} \)
47 \( 1 - 36.6iT - 2.20e3T^{2} \)
53 \( 1 + (50.9 + 50.9i)T + 2.80e3iT^{2} \)
59 \( 1 + (12.1 + 12.1i)T + 3.48e3iT^{2} \)
61 \( 1 + (-27.5 - 27.5i)T + 3.72e3iT^{2} \)
67 \( 1 + (4.84 + 4.84i)T + 4.48e3iT^{2} \)
71 \( 1 - 74.9T + 5.04e3T^{2} \)
73 \( 1 - 3.47iT - 5.32e3T^{2} \)
79 \( 1 + 103.T + 6.24e3T^{2} \)
83 \( 1 + (31.7 - 31.7i)T - 6.88e3iT^{2} \)
89 \( 1 + 78.2T + 7.92e3T^{2} \)
97 \( 1 + 61.5T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44409976613083367502493131954, −9.937800117868514107788501582330, −9.387946014175363962685029190587, −8.336536482114376254071147634072, −7.40416402453660330546660210509, −6.36681083918272154645030727117, −5.72798621348176431024835619261, −3.93440307417416100555087624698, −2.55397801208365561214429214982, −1.62659102240809480005043300177, 1.06531053949925393769062499702, 2.99303821171202374829299008318, 4.05726502871323063036341584827, 5.02525566875055752655183596144, 6.18520971385148559868769894008, 7.47460358795179491620966118073, 8.517822874022691739534710847671, 9.393400095092702260971570649266, 9.927109218744500847603457370314, 11.07622145255395276136566092007

Graph of the $Z$-function along the critical line