Properties

Label 2-384-128.107-c2-0-21
Degree $2$
Conductor $384$
Sign $-0.151 - 0.988i$
Analytic cond. $10.4632$
Root an. cond. $3.23469$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.98 + 0.278i)2-s + (−1.09 + 1.33i)3-s + (3.84 + 1.10i)4-s + (1.13 + 3.74i)5-s + (−2.54 + 2.34i)6-s + (−0.786 + 3.95i)7-s + (7.30 + 3.25i)8-s + (−0.585 − 2.94i)9-s + (1.20 + 7.72i)10-s + (11.9 + 1.18i)11-s + (−5.70 + 3.93i)12-s + (−22.2 − 6.76i)13-s + (−2.65 + 7.60i)14-s + (−6.25 − 2.59i)15-s + (13.5 + 8.47i)16-s + (11.0 + 26.6i)17-s + ⋯
L(s)  = 1  + (0.990 + 0.139i)2-s + (−0.366 + 0.446i)3-s + (0.961 + 0.275i)4-s + (0.227 + 0.748i)5-s + (−0.424 + 0.390i)6-s + (−0.112 + 0.564i)7-s + (0.913 + 0.406i)8-s + (−0.0650 − 0.326i)9-s + (0.120 + 0.772i)10-s + (1.08 + 0.107i)11-s + (−0.475 + 0.328i)12-s + (−1.71 − 0.520i)13-s + (−0.189 + 0.543i)14-s + (−0.417 − 0.172i)15-s + (0.848 + 0.529i)16-s + (0.650 + 1.57i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.151 - 0.988i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.151 - 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $-0.151 - 0.988i$
Analytic conductor: \(10.4632\)
Root analytic conductor: \(3.23469\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (235, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1),\ -0.151 - 0.988i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.83506 + 2.13679i\)
\(L(\frac12)\) \(\approx\) \(1.83506 + 2.13679i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.98 - 0.278i)T \)
3 \( 1 + (1.09 - 1.33i)T \)
good5 \( 1 + (-1.13 - 3.74i)T + (-20.7 + 13.8i)T^{2} \)
7 \( 1 + (0.786 - 3.95i)T + (-45.2 - 18.7i)T^{2} \)
11 \( 1 + (-11.9 - 1.18i)T + (118. + 23.6i)T^{2} \)
13 \( 1 + (22.2 + 6.76i)T + (140. + 93.8i)T^{2} \)
17 \( 1 + (-11.0 - 26.6i)T + (-204. + 204. i)T^{2} \)
19 \( 1 + (2.03 - 1.08i)T + (200. - 300. i)T^{2} \)
23 \( 1 + (21.6 + 14.4i)T + (202. + 488. i)T^{2} \)
29 \( 1 + (3.18 - 0.313i)T + (824. - 164. i)T^{2} \)
31 \( 1 + (22.7 - 22.7i)T - 961iT^{2} \)
37 \( 1 + (-53.8 - 28.7i)T + (760. + 1.13e3i)T^{2} \)
41 \( 1 + (-2.79 - 1.86i)T + (643. + 1.55e3i)T^{2} \)
43 \( 1 + (8.83 + 10.7i)T + (-360. + 1.81e3i)T^{2} \)
47 \( 1 + (31.4 + 75.9i)T + (-1.56e3 + 1.56e3i)T^{2} \)
53 \( 1 + (-81.9 - 8.06i)T + (2.75e3 + 548. i)T^{2} \)
59 \( 1 + (-3.61 - 11.9i)T + (-2.89e3 + 1.93e3i)T^{2} \)
61 \( 1 + (-63.0 + 76.7i)T + (-725. - 3.64e3i)T^{2} \)
67 \( 1 + (-23.8 - 19.5i)T + (875. + 4.40e3i)T^{2} \)
71 \( 1 + (45.9 + 9.14i)T + (4.65e3 + 1.92e3i)T^{2} \)
73 \( 1 + (98.2 - 19.5i)T + (4.92e3 - 2.03e3i)T^{2} \)
79 \( 1 + (-51.5 + 124. i)T + (-4.41e3 - 4.41e3i)T^{2} \)
83 \( 1 + (28.5 + 53.4i)T + (-3.82e3 + 5.72e3i)T^{2} \)
89 \( 1 + (42.3 + 63.3i)T + (-3.03e3 + 7.31e3i)T^{2} \)
97 \( 1 + (-110. - 110. i)T + 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64596330123314594272726806180, −10.40387587260701941326826545186, −10.01272303216911984411624852519, −8.511223003166428897086830543116, −7.26913065524575697229610870163, −6.35545456976852084349057122486, −5.62295457980670744897495754630, −4.46671543632355933244319222505, −3.37218085218613778876531080189, −2.15213913118831205059998710326, 0.979452256952400176780420376121, 2.41090401507853725692760493039, 4.03409885167141668146872281190, 4.95063956769120846250443936998, 5.85774122028343216943104356589, 7.06913995302768951080400944881, 7.55257626539338405368555558295, 9.332453181888639474242704022238, 9.943498205611441572479496323314, 11.39419844546951459068347780802

Graph of the $Z$-function along the critical line