Properties

Label 2-384-128.101-c1-0-2
Degree $2$
Conductor $384$
Sign $-0.990 - 0.136i$
Analytic cond. $3.06625$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.699 + 1.22i)2-s + (0.881 − 0.471i)3-s + (−1.02 − 1.71i)4-s + (−0.339 − 0.413i)5-s + (−0.0376 + 1.41i)6-s + (−4.31 + 2.88i)7-s + (2.82 − 0.0519i)8-s + (0.555 − 0.831i)9-s + (0.744 − 0.127i)10-s + (−3.29 + 0.999i)11-s + (−1.71 − 1.03i)12-s + (2.77 + 2.27i)13-s + (−0.525 − 7.32i)14-s + (−0.493 − 0.204i)15-s + (−1.91 + 3.51i)16-s + (−4.63 + 1.91i)17-s + ⋯
L(s)  = 1  + (−0.494 + 0.869i)2-s + (0.509 − 0.272i)3-s + (−0.510 − 0.859i)4-s + (−0.151 − 0.184i)5-s + (−0.0153 + 0.577i)6-s + (−1.63 + 1.09i)7-s + (0.999 − 0.0183i)8-s + (0.185 − 0.277i)9-s + (0.235 − 0.0403i)10-s + (−0.993 + 0.301i)11-s + (−0.493 − 0.298i)12-s + (0.769 + 0.631i)13-s + (−0.140 − 1.95i)14-s + (−0.127 − 0.0528i)15-s + (−0.478 + 0.878i)16-s + (−1.12 + 0.465i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.990 - 0.136i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.990 - 0.136i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $-0.990 - 0.136i$
Analytic conductor: \(3.06625\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (229, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1/2),\ -0.990 - 0.136i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0322122 + 0.469163i\)
\(L(\frac12)\) \(\approx\) \(0.0322122 + 0.469163i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.699 - 1.22i)T \)
3 \( 1 + (-0.881 + 0.471i)T \)
good5 \( 1 + (0.339 + 0.413i)T + (-0.975 + 4.90i)T^{2} \)
7 \( 1 + (4.31 - 2.88i)T + (2.67 - 6.46i)T^{2} \)
11 \( 1 + (3.29 - 0.999i)T + (9.14 - 6.11i)T^{2} \)
13 \( 1 + (-2.77 - 2.27i)T + (2.53 + 12.7i)T^{2} \)
17 \( 1 + (4.63 - 1.91i)T + (12.0 - 12.0i)T^{2} \)
19 \( 1 + (-0.220 - 2.23i)T + (-18.6 + 3.70i)T^{2} \)
23 \( 1 + (5.50 - 1.09i)T + (21.2 - 8.80i)T^{2} \)
29 \( 1 + (1.91 - 6.31i)T + (-24.1 - 16.1i)T^{2} \)
31 \( 1 + (-6.96 - 6.96i)T + 31iT^{2} \)
37 \( 1 + (2.66 + 0.262i)T + (36.2 + 7.21i)T^{2} \)
41 \( 1 + (0.485 + 2.44i)T + (-37.8 + 15.6i)T^{2} \)
43 \( 1 + (5.65 + 3.02i)T + (23.8 + 35.7i)T^{2} \)
47 \( 1 + (2.20 + 5.31i)T + (-33.2 + 33.2i)T^{2} \)
53 \( 1 + (2.24 + 7.40i)T + (-44.0 + 29.4i)T^{2} \)
59 \( 1 + (-7.81 + 6.41i)T + (11.5 - 57.8i)T^{2} \)
61 \( 1 + (-5.37 - 10.0i)T + (-33.8 + 50.7i)T^{2} \)
67 \( 1 + (-2.12 - 3.97i)T + (-37.2 + 55.7i)T^{2} \)
71 \( 1 + (-1.78 - 2.66i)T + (-27.1 + 65.5i)T^{2} \)
73 \( 1 + (-0.963 - 0.644i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (3.81 - 9.20i)T + (-55.8 - 55.8i)T^{2} \)
83 \( 1 + (10.4 - 1.02i)T + (81.4 - 16.1i)T^{2} \)
89 \( 1 + (-14.4 - 2.86i)T + (82.2 + 34.0i)T^{2} \)
97 \( 1 + (-9.74 - 9.74i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.95654569512039226829927321600, −10.39124319521548221853656491786, −9.778046797396802443001073659807, −8.593874428406616644797676304253, −8.493108871973169431347610255409, −6.88996701910288072677666869633, −6.38063212695423898905484271903, −5.28307995279052009191502265947, −3.73681735299958803575169279243, −2.18030241424846685910414682357, 0.32689864893982278771740072165, 2.65306924448595581744146270883, 3.46877638594566863498217857500, 4.43042658848670571677874936127, 6.27058595143128903255482441617, 7.44290610180761968994298297757, 8.231399122162883496172802769296, 9.380314561226210495138988800571, 10.01837856927383727950828563986, 10.69323624377392592739093493807

Graph of the $Z$-function along the critical line