Properties

Label 2-384-1.1-c7-0-46
Degree $2$
Conductor $384$
Sign $-1$
Analytic cond. $119.955$
Root an. cond. $10.9524$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s − 65.0·5-s − 275.·7-s + 729·9-s + 5.54e3·11-s + 4.95e3·13-s − 1.75e3·15-s − 2.03e4·17-s − 4.91e4·19-s − 7.43e3·21-s − 5.51e4·23-s − 7.38e4·25-s + 1.96e4·27-s + 1.32e5·29-s + 2.48e5·31-s + 1.49e5·33-s + 1.79e4·35-s − 1.58e5·37-s + 1.33e5·39-s + 4.11e5·41-s + 1.65e5·43-s − 4.74e4·45-s − 8.81e5·47-s − 7.47e5·49-s − 5.49e5·51-s + 1.06e6·53-s − 3.60e5·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.232·5-s − 0.303·7-s + 0.333·9-s + 1.25·11-s + 0.625·13-s − 0.134·15-s − 1.00·17-s − 1.64·19-s − 0.175·21-s − 0.945·23-s − 0.945·25-s + 0.192·27-s + 1.00·29-s + 1.49·31-s + 0.724·33-s + 0.0705·35-s − 0.513·37-s + 0.361·39-s + 0.932·41-s + 0.317·43-s − 0.0775·45-s − 1.23·47-s − 0.908·49-s − 0.579·51-s + 0.986·53-s − 0.292·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $-1$
Analytic conductor: \(119.955\)
Root analytic conductor: \(10.9524\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 384,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 27T \)
good5 \( 1 + 65.0T + 7.81e4T^{2} \)
7 \( 1 + 275.T + 8.23e5T^{2} \)
11 \( 1 - 5.54e3T + 1.94e7T^{2} \)
13 \( 1 - 4.95e3T + 6.27e7T^{2} \)
17 \( 1 + 2.03e4T + 4.10e8T^{2} \)
19 \( 1 + 4.91e4T + 8.93e8T^{2} \)
23 \( 1 + 5.51e4T + 3.40e9T^{2} \)
29 \( 1 - 1.32e5T + 1.72e10T^{2} \)
31 \( 1 - 2.48e5T + 2.75e10T^{2} \)
37 \( 1 + 1.58e5T + 9.49e10T^{2} \)
41 \( 1 - 4.11e5T + 1.94e11T^{2} \)
43 \( 1 - 1.65e5T + 2.71e11T^{2} \)
47 \( 1 + 8.81e5T + 5.06e11T^{2} \)
53 \( 1 - 1.06e6T + 1.17e12T^{2} \)
59 \( 1 + 1.20e6T + 2.48e12T^{2} \)
61 \( 1 - 7.23e5T + 3.14e12T^{2} \)
67 \( 1 + 1.51e6T + 6.06e12T^{2} \)
71 \( 1 - 5.24e5T + 9.09e12T^{2} \)
73 \( 1 + 5.42e5T + 1.10e13T^{2} \)
79 \( 1 + 3.24e6T + 1.92e13T^{2} \)
83 \( 1 - 2.79e6T + 2.71e13T^{2} \)
89 \( 1 + 1.54e6T + 4.42e13T^{2} \)
97 \( 1 + 1.01e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.593860837490180174126837042188, −8.687011350709786111221461525956, −8.092890338347545376375516584695, −6.66911692758347002966748265742, −6.22521827866964640522889295986, −4.41024307801941332633572372037, −3.86322255298199291199214484423, −2.53009704566797546566480938077, −1.42834608239971789666392047933, 0, 1.42834608239971789666392047933, 2.53009704566797546566480938077, 3.86322255298199291199214484423, 4.41024307801941332633572372037, 6.22521827866964640522889295986, 6.66911692758347002966748265742, 8.092890338347545376375516584695, 8.687011350709786111221461525956, 9.593860837490180174126837042188

Graph of the $Z$-function along the critical line