L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s − 11-s + 12-s − 13-s − 15-s + 16-s − 6·17-s + 18-s − 4·19-s − 20-s − 22-s − 6·23-s + 24-s − 4·25-s − 26-s + 27-s + 3·29-s − 30-s − 11·31-s + 32-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s − 0.917·19-s − 0.223·20-s − 0.213·22-s − 1.25·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.192·27-s + 0.557·29-s − 0.182·30-s − 1.97·31-s + 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 + T + p T^{2} \) |
| 11 | \( 1 + T + p T^{2} \) |
| 17 | \( 1 + 6 T + p T^{2} \) |
| 19 | \( 1 + 4 T + p T^{2} \) |
| 23 | \( 1 + 6 T + p T^{2} \) |
| 29 | \( 1 - 3 T + p T^{2} \) |
| 31 | \( 1 + 11 T + p T^{2} \) |
| 37 | \( 1 - 4 T + p T^{2} \) |
| 41 | \( 1 - 12 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 + 5 T + p T^{2} \) |
| 59 | \( 1 + 5 T + p T^{2} \) |
| 61 | \( 1 - 12 T + p T^{2} \) |
| 67 | \( 1 - 16 T + p T^{2} \) |
| 71 | \( 1 - 6 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 - 7 T + p T^{2} \) |
| 83 | \( 1 + 17 T + p T^{2} \) |
| 89 | \( 1 + 12 T + p T^{2} \) |
| 97 | \( 1 - 13 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.065044237211499074582443930487, −7.40959697567235032596626418926, −6.61287621466136249494819553157, −5.92969431079242567166849791146, −4.90155890592302143711279645772, −4.17779126118902716532299554235, −3.63582865080127716817521915818, −2.48055820679228920787668670852, −1.90569029834656538652726068604, 0,
1.90569029834656538652726068604, 2.48055820679228920787668670852, 3.63582865080127716817521915818, 4.17779126118902716532299554235, 4.90155890592302143711279645772, 5.92969431079242567166849791146, 6.61287621466136249494819553157, 7.40959697567235032596626418926, 8.065044237211499074582443930487