L(s) = 1 | + 2-s − 3-s + 4-s + 0.561·5-s − 6-s + 8-s + 9-s + 0.561·10-s + 2.56·11-s − 12-s − 13-s − 0.561·15-s + 16-s − 5.68·17-s + 18-s − 7.68·19-s + 0.561·20-s + 2.56·22-s − 1.43·23-s − 24-s − 4.68·25-s − 26-s − 27-s − 5.68·29-s − 0.561·30-s + 10.2·31-s + 32-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.251·5-s − 0.408·6-s + 0.353·8-s + 0.333·9-s + 0.177·10-s + 0.772·11-s − 0.288·12-s − 0.277·13-s − 0.144·15-s + 0.250·16-s − 1.37·17-s + 0.235·18-s − 1.76·19-s + 0.125·20-s + 0.546·22-s − 0.299·23-s − 0.204·24-s − 0.936·25-s − 0.196·26-s − 0.192·27-s − 1.05·29-s − 0.102·30-s + 1.84·31-s + 0.176·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 - 0.561T + 5T^{2} \) |
| 11 | \( 1 - 2.56T + 11T^{2} \) |
| 17 | \( 1 + 5.68T + 17T^{2} \) |
| 19 | \( 1 + 7.68T + 19T^{2} \) |
| 23 | \( 1 + 1.43T + 23T^{2} \) |
| 29 | \( 1 + 5.68T + 29T^{2} \) |
| 31 | \( 1 - 10.2T + 31T^{2} \) |
| 37 | \( 1 + 3.43T + 37T^{2} \) |
| 41 | \( 1 + 7.12T + 41T^{2} \) |
| 43 | \( 1 + 10.5T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 + 4.24T + 53T^{2} \) |
| 59 | \( 1 - 14.2T + 59T^{2} \) |
| 61 | \( 1 - 5.68T + 61T^{2} \) |
| 67 | \( 1 - 1.12T + 67T^{2} \) |
| 71 | \( 1 - 8T + 71T^{2} \) |
| 73 | \( 1 + 0.561T + 73T^{2} \) |
| 79 | \( 1 + 2.87T + 79T^{2} \) |
| 83 | \( 1 + 17.1T + 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 - 18.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.188849464902300460548092872658, −6.90282458555615350675509397390, −6.62979300972915581834554219602, −5.94786860717645271088139912042, −5.04987953835157913215592147057, −4.32645941060827123763967334007, −3.73636829008690494363744241843, −2.39166072025164051913154222172, −1.68874239473002760244411775936, 0,
1.68874239473002760244411775936, 2.39166072025164051913154222172, 3.73636829008690494363744241843, 4.32645941060827123763967334007, 5.04987953835157913215592147057, 5.94786860717645271088139912042, 6.62979300972915581834554219602, 6.90282458555615350675509397390, 8.188849464902300460548092872658