Properties

Label 2-3822-1.1-c1-0-73
Degree $2$
Conductor $3822$
Sign $-1$
Analytic cond. $30.5188$
Root an. cond. $5.52438$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 0.561·5-s − 6-s + 8-s + 9-s + 0.561·10-s + 2.56·11-s − 12-s − 13-s − 0.561·15-s + 16-s − 5.68·17-s + 18-s − 7.68·19-s + 0.561·20-s + 2.56·22-s − 1.43·23-s − 24-s − 4.68·25-s − 26-s − 27-s − 5.68·29-s − 0.561·30-s + 10.2·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.251·5-s − 0.408·6-s + 0.353·8-s + 0.333·9-s + 0.177·10-s + 0.772·11-s − 0.288·12-s − 0.277·13-s − 0.144·15-s + 0.250·16-s − 1.37·17-s + 0.235·18-s − 1.76·19-s + 0.125·20-s + 0.546·22-s − 0.299·23-s − 0.204·24-s − 0.936·25-s − 0.196·26-s − 0.192·27-s − 1.05·29-s − 0.102·30-s + 1.84·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3822\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(30.5188\)
Root analytic conductor: \(5.52438\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3822,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 0.561T + 5T^{2} \)
11 \( 1 - 2.56T + 11T^{2} \)
17 \( 1 + 5.68T + 17T^{2} \)
19 \( 1 + 7.68T + 19T^{2} \)
23 \( 1 + 1.43T + 23T^{2} \)
29 \( 1 + 5.68T + 29T^{2} \)
31 \( 1 - 10.2T + 31T^{2} \)
37 \( 1 + 3.43T + 37T^{2} \)
41 \( 1 + 7.12T + 41T^{2} \)
43 \( 1 + 10.5T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 4.24T + 53T^{2} \)
59 \( 1 - 14.2T + 59T^{2} \)
61 \( 1 - 5.68T + 61T^{2} \)
67 \( 1 - 1.12T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 0.561T + 73T^{2} \)
79 \( 1 + 2.87T + 79T^{2} \)
83 \( 1 + 17.1T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 18.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.188849464902300460548092872658, −6.90282458555615350675509397390, −6.62979300972915581834554219602, −5.94786860717645271088139912042, −5.04987953835157913215592147057, −4.32645941060827123763967334007, −3.73636829008690494363744241843, −2.39166072025164051913154222172, −1.68874239473002760244411775936, 0, 1.68874239473002760244411775936, 2.39166072025164051913154222172, 3.73636829008690494363744241843, 4.32645941060827123763967334007, 5.04987953835157913215592147057, 5.94786860717645271088139912042, 6.62979300972915581834554219602, 6.90282458555615350675509397390, 8.188849464902300460548092872658

Graph of the $Z$-function along the critical line