Properties

Label 2-3822-1.1-c1-0-6
Degree $2$
Conductor $3822$
Sign $1$
Analytic cond. $30.5188$
Root an. cond. $5.52438$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2.61·5-s + 6-s − 8-s + 9-s − 2.61·10-s − 3.55·11-s − 12-s + 13-s − 2.61·15-s + 16-s − 7.95·17-s − 18-s − 2.17·19-s + 2.61·20-s + 3.55·22-s − 2.55·23-s + 24-s + 1.82·25-s − 26-s − 27-s − 3·29-s + 2.61·30-s − 0.828·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.16·5-s + 0.408·6-s − 0.353·8-s + 0.333·9-s − 0.826·10-s − 1.07·11-s − 0.288·12-s + 0.277·13-s − 0.674·15-s + 0.250·16-s − 1.92·17-s − 0.235·18-s − 0.498·19-s + 0.584·20-s + 0.758·22-s − 0.533·23-s + 0.204·24-s + 0.365·25-s − 0.196·26-s − 0.192·27-s − 0.557·29-s + 0.477·30-s − 0.148·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3822\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(30.5188\)
Root analytic conductor: \(5.52438\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3822,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.035634886\)
\(L(\frac12)\) \(\approx\) \(1.035634886\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2.61T + 5T^{2} \)
11 \( 1 + 3.55T + 11T^{2} \)
17 \( 1 + 7.95T + 17T^{2} \)
19 \( 1 + 2.17T + 19T^{2} \)
23 \( 1 + 2.55T + 23T^{2} \)
29 \( 1 + 3T + 29T^{2} \)
31 \( 1 + 0.828T + 31T^{2} \)
37 \( 1 - 7.78T + 37T^{2} \)
41 \( 1 - 11.7T + 41T^{2} \)
43 \( 1 + 0.773T + 43T^{2} \)
47 \( 1 + 2.94T + 47T^{2} \)
53 \( 1 - 12.5T + 53T^{2} \)
59 \( 1 - 4.78T + 59T^{2} \)
61 \( 1 - 6.72T + 61T^{2} \)
67 \( 1 - 14.5T + 67T^{2} \)
71 \( 1 + 7.82T + 71T^{2} \)
73 \( 1 - 10.5T + 73T^{2} \)
79 \( 1 + 2.39T + 79T^{2} \)
83 \( 1 - 15.5T + 83T^{2} \)
89 \( 1 - 4.21T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.590620758924091994259830747197, −7.80513000621873706211737122962, −6.95122759929686426711544858538, −6.23232985192461731691614789814, −5.75667527871166999711037062642, −4.89665493550276033544712120751, −3.94619220557313862472415674070, −2.35907171278270428682707484180, −2.14634520294306023495454624702, −0.64780824396376225345205350864, 0.64780824396376225345205350864, 2.14634520294306023495454624702, 2.35907171278270428682707484180, 3.94619220557313862472415674070, 4.89665493550276033544712120751, 5.75667527871166999711037062642, 6.23232985192461731691614789814, 6.95122759929686426711544858538, 7.80513000621873706211737122962, 8.590620758924091994259830747197

Graph of the $Z$-function along the critical line