L(s) = 1 | − 2-s − 3-s + 4-s − 2·5-s + 6-s − 8-s + 9-s + 2·10-s + 3·11-s − 12-s − 13-s + 2·15-s + 16-s + 17-s − 18-s − 3·19-s − 2·20-s − 3·22-s + 24-s − 25-s + 26-s − 27-s + 3·29-s − 2·30-s − 4·31-s − 32-s − 3·33-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.894·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.632·10-s + 0.904·11-s − 0.288·12-s − 0.277·13-s + 0.516·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s − 0.688·19-s − 0.447·20-s − 0.639·22-s + 0.204·24-s − 1/5·25-s + 0.196·26-s − 0.192·27-s + 0.557·29-s − 0.365·30-s − 0.718·31-s − 0.176·32-s − 0.522·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 7 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 - 3 T + p T^{2} \) |
| 17 | \( 1 - T + p T^{2} \) |
| 19 | \( 1 + 3 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 3 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 2 T + p T^{2} \) |
| 41 | \( 1 - 2 T + p T^{2} \) |
| 43 | \( 1 - 6 T + p T^{2} \) |
| 47 | \( 1 + 9 T + p T^{2} \) |
| 53 | \( 1 - T + p T^{2} \) |
| 59 | \( 1 - 11 T + p T^{2} \) |
| 61 | \( 1 - 11 T + p T^{2} \) |
| 67 | \( 1 + 7 T + p T^{2} \) |
| 71 | \( 1 - 15 T + p T^{2} \) |
| 73 | \( 1 + 12 T + p T^{2} \) |
| 79 | \( 1 - 2 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 + 12 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.156194040661518321377408808114, −7.39171314572294905392732190792, −6.79120077635151261379087305411, −6.09240079730184824533716410724, −5.16094770127528571404961525433, −4.18385666471602742957008584979, −3.56531718909845679209008011065, −2.29176214015494441446638353293, −1.13632157635519827185453756304, 0,
1.13632157635519827185453756304, 2.29176214015494441446638353293, 3.56531718909845679209008011065, 4.18385666471602742957008584979, 5.16094770127528571404961525433, 6.09240079730184824533716410724, 6.79120077635151261379087305411, 7.39171314572294905392732190792, 8.156194040661518321377408808114