Properties

Label 2-3808-1.1-c1-0-92
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.20·3-s + 0.863·5-s + 7-s − 1.54·9-s + 0.0275·11-s − 0.319·13-s + 1.04·15-s − 17-s − 1.03·19-s + 1.20·21-s − 8.22·23-s − 4.25·25-s − 5.48·27-s − 1.97·29-s − 8.12·31-s + 0.0332·33-s + 0.863·35-s − 8.86·37-s − 0.385·39-s − 3.61·41-s − 5.96·43-s − 1.33·45-s + 8.25·47-s + 49-s − 1.20·51-s + 8.14·53-s + 0.0237·55-s + ⋯
L(s)  = 1  + 0.696·3-s + 0.386·5-s + 0.377·7-s − 0.514·9-s + 0.00829·11-s − 0.0886·13-s + 0.269·15-s − 0.242·17-s − 0.236·19-s + 0.263·21-s − 1.71·23-s − 0.850·25-s − 1.05·27-s − 0.366·29-s − 1.45·31-s + 0.00578·33-s + 0.146·35-s − 1.45·37-s − 0.0617·39-s − 0.564·41-s − 0.909·43-s − 0.198·45-s + 1.20·47-s + 0.142·49-s − 0.168·51-s + 1.11·53-s + 0.00320·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 - 1.20T + 3T^{2} \)
5 \( 1 - 0.863T + 5T^{2} \)
11 \( 1 - 0.0275T + 11T^{2} \)
13 \( 1 + 0.319T + 13T^{2} \)
19 \( 1 + 1.03T + 19T^{2} \)
23 \( 1 + 8.22T + 23T^{2} \)
29 \( 1 + 1.97T + 29T^{2} \)
31 \( 1 + 8.12T + 31T^{2} \)
37 \( 1 + 8.86T + 37T^{2} \)
41 \( 1 + 3.61T + 41T^{2} \)
43 \( 1 + 5.96T + 43T^{2} \)
47 \( 1 - 8.25T + 47T^{2} \)
53 \( 1 - 8.14T + 53T^{2} \)
59 \( 1 - 7.34T + 59T^{2} \)
61 \( 1 + 0.736T + 61T^{2} \)
67 \( 1 - 0.540T + 67T^{2} \)
71 \( 1 + 1.76T + 71T^{2} \)
73 \( 1 + 3.55T + 73T^{2} \)
79 \( 1 - 13.2T + 79T^{2} \)
83 \( 1 - 7.27T + 83T^{2} \)
89 \( 1 + 7.62T + 89T^{2} \)
97 \( 1 - 5.01T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.188222878533690242293226323710, −7.56922055359131016245976426404, −6.70439539605040165657893416155, −5.75098633546280971857541954630, −5.30069729039936896268101564347, −4.05801637100844488657570708476, −3.51128721028254343729343367741, −2.28602680729985539429309963429, −1.83320613593143170744321438761, 0, 1.83320613593143170744321438761, 2.28602680729985539429309963429, 3.51128721028254343729343367741, 4.05801637100844488657570708476, 5.30069729039936896268101564347, 5.75098633546280971857541954630, 6.70439539605040165657893416155, 7.56922055359131016245976426404, 8.188222878533690242293226323710

Graph of the $Z$-function along the critical line