Properties

Label 2-3808-1.1-c1-0-82
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.698·3-s + 3.66·5-s + 7-s − 2.51·9-s − 3.03·11-s − 2.40·13-s − 2.56·15-s + 17-s − 1.71·19-s − 0.698·21-s − 6.60·23-s + 8.43·25-s + 3.85·27-s + 5.84·29-s + 0.381·31-s + 2.12·33-s + 3.66·35-s − 6.48·37-s + 1.68·39-s − 5.75·41-s − 6.74·43-s − 9.20·45-s − 5.73·47-s + 49-s − 0.698·51-s − 4.98·53-s − 11.1·55-s + ⋯
L(s)  = 1  − 0.403·3-s + 1.63·5-s + 0.377·7-s − 0.837·9-s − 0.915·11-s − 0.667·13-s − 0.661·15-s + 0.242·17-s − 0.394·19-s − 0.152·21-s − 1.37·23-s + 1.68·25-s + 0.741·27-s + 1.08·29-s + 0.0684·31-s + 0.369·33-s + 0.619·35-s − 1.06·37-s + 0.269·39-s − 0.898·41-s − 1.02·43-s − 1.37·45-s − 0.836·47-s + 0.142·49-s − 0.0978·51-s − 0.684·53-s − 1.50·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 + 0.698T + 3T^{2} \)
5 \( 1 - 3.66T + 5T^{2} \)
11 \( 1 + 3.03T + 11T^{2} \)
13 \( 1 + 2.40T + 13T^{2} \)
19 \( 1 + 1.71T + 19T^{2} \)
23 \( 1 + 6.60T + 23T^{2} \)
29 \( 1 - 5.84T + 29T^{2} \)
31 \( 1 - 0.381T + 31T^{2} \)
37 \( 1 + 6.48T + 37T^{2} \)
41 \( 1 + 5.75T + 41T^{2} \)
43 \( 1 + 6.74T + 43T^{2} \)
47 \( 1 + 5.73T + 47T^{2} \)
53 \( 1 + 4.98T + 53T^{2} \)
59 \( 1 - 8.74T + 59T^{2} \)
61 \( 1 - 0.822T + 61T^{2} \)
67 \( 1 + 14.1T + 67T^{2} \)
71 \( 1 + 14.5T + 71T^{2} \)
73 \( 1 - 9.22T + 73T^{2} \)
79 \( 1 + 11.2T + 79T^{2} \)
83 \( 1 + 12.8T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 + 3.08T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.352683610766871906180094950255, −7.31770188514030776751897753197, −6.39404586226741169894251711592, −5.88099096647492362373708314054, −5.19974377598806000704353081005, −4.69764549088495935811265258980, −3.16959992655758524457932838461, −2.37987763838462102201537354296, −1.62196117090783647827001481208, 0, 1.62196117090783647827001481208, 2.37987763838462102201537354296, 3.16959992655758524457932838461, 4.69764549088495935811265258980, 5.19974377598806000704353081005, 5.88099096647492362373708314054, 6.39404586226741169894251711592, 7.31770188514030776751897753197, 8.352683610766871906180094950255

Graph of the $Z$-function along the critical line