Properties

Label 2-3808-1.1-c1-0-78
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73·3-s − 1.54·5-s − 7-s + 0.0161·9-s − 3.07·11-s + 5.13·13-s − 2.68·15-s − 17-s + 2.95·19-s − 1.73·21-s + 0.956·23-s − 2.61·25-s − 5.18·27-s + 4.83·29-s − 3.98·31-s − 5.34·33-s + 1.54·35-s − 5.56·37-s + 8.91·39-s − 3.34·41-s − 1.96·43-s − 0.0249·45-s − 4.46·47-s + 49-s − 1.73·51-s − 7.31·53-s + 4.74·55-s + ⋯
L(s)  = 1  + 1.00·3-s − 0.690·5-s − 0.377·7-s + 0.00537·9-s − 0.927·11-s + 1.42·13-s − 0.692·15-s − 0.242·17-s + 0.678·19-s − 0.378·21-s + 0.199·23-s − 0.523·25-s − 0.997·27-s + 0.898·29-s − 0.716·31-s − 0.930·33-s + 0.260·35-s − 0.914·37-s + 1.42·39-s − 0.522·41-s − 0.299·43-s − 0.00371·45-s − 0.651·47-s + 0.142·49-s − 0.243·51-s − 1.00·53-s + 0.640·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 - 1.73T + 3T^{2} \)
5 \( 1 + 1.54T + 5T^{2} \)
11 \( 1 + 3.07T + 11T^{2} \)
13 \( 1 - 5.13T + 13T^{2} \)
19 \( 1 - 2.95T + 19T^{2} \)
23 \( 1 - 0.956T + 23T^{2} \)
29 \( 1 - 4.83T + 29T^{2} \)
31 \( 1 + 3.98T + 31T^{2} \)
37 \( 1 + 5.56T + 37T^{2} \)
41 \( 1 + 3.34T + 41T^{2} \)
43 \( 1 + 1.96T + 43T^{2} \)
47 \( 1 + 4.46T + 47T^{2} \)
53 \( 1 + 7.31T + 53T^{2} \)
59 \( 1 + 0.494T + 59T^{2} \)
61 \( 1 - 2.23T + 61T^{2} \)
67 \( 1 - 0.329T + 67T^{2} \)
71 \( 1 - 2.42T + 71T^{2} \)
73 \( 1 + 14.2T + 73T^{2} \)
79 \( 1 - 8.89T + 79T^{2} \)
83 \( 1 + 17.6T + 83T^{2} \)
89 \( 1 - 9.59T + 89T^{2} \)
97 \( 1 + 3.61T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.225468054257371505036017396686, −7.62396643672805457224033199517, −6.79974885146387441717157620924, −5.90206247919535763181784291233, −5.09101526931573892034660582876, −3.98014149130606497813579784150, −3.37358806395957640211002193197, −2.75590996893853433981509946979, −1.56140328590977581426550347772, 0, 1.56140328590977581426550347772, 2.75590996893853433981509946979, 3.37358806395957640211002193197, 3.98014149130606497813579784150, 5.09101526931573892034660582876, 5.90206247919535763181784291233, 6.79974885146387441717157620924, 7.62396643672805457224033199517, 8.225468054257371505036017396686

Graph of the $Z$-function along the critical line