Properties

Label 2-3808-1.1-c1-0-73
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.07·3-s − 1.81·5-s − 7-s − 1.84·9-s + 4.90·11-s − 4.83·13-s − 1.94·15-s + 17-s + 5.27·19-s − 1.07·21-s + 3.94·23-s − 1.71·25-s − 5.20·27-s − 2.75·29-s + 1.28·31-s + 5.27·33-s + 1.81·35-s + 0.798·37-s − 5.18·39-s + 4.50·41-s − 5.71·43-s + 3.34·45-s − 3.76·47-s + 49-s + 1.07·51-s − 7.86·53-s − 8.90·55-s + ⋯
L(s)  = 1  + 0.619·3-s − 0.810·5-s − 0.377·7-s − 0.615·9-s + 1.48·11-s − 1.34·13-s − 0.502·15-s + 0.242·17-s + 1.20·19-s − 0.234·21-s + 0.822·23-s − 0.342·25-s − 1.00·27-s − 0.512·29-s + 0.230·31-s + 0.917·33-s + 0.306·35-s + 0.131·37-s − 0.830·39-s + 0.704·41-s − 0.871·43-s + 0.499·45-s − 0.549·47-s + 0.142·49-s + 0.150·51-s − 1.08·53-s − 1.20·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 - 1.07T + 3T^{2} \)
5 \( 1 + 1.81T + 5T^{2} \)
11 \( 1 - 4.90T + 11T^{2} \)
13 \( 1 + 4.83T + 13T^{2} \)
19 \( 1 - 5.27T + 19T^{2} \)
23 \( 1 - 3.94T + 23T^{2} \)
29 \( 1 + 2.75T + 29T^{2} \)
31 \( 1 - 1.28T + 31T^{2} \)
37 \( 1 - 0.798T + 37T^{2} \)
41 \( 1 - 4.50T + 41T^{2} \)
43 \( 1 + 5.71T + 43T^{2} \)
47 \( 1 + 3.76T + 47T^{2} \)
53 \( 1 + 7.86T + 53T^{2} \)
59 \( 1 + 0.722T + 59T^{2} \)
61 \( 1 + 8.29T + 61T^{2} \)
67 \( 1 + 0.598T + 67T^{2} \)
71 \( 1 + 15.1T + 71T^{2} \)
73 \( 1 + 7.53T + 73T^{2} \)
79 \( 1 + 0.156T + 79T^{2} \)
83 \( 1 - 6.38T + 83T^{2} \)
89 \( 1 + 0.304T + 89T^{2} \)
97 \( 1 + 16.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.005436328883148807493657774879, −7.52166405178376635301381609837, −6.83553897050101447754137725694, −5.93807492142009468922970216185, −5.01890694427427408822783295610, −4.13089930324050149293044638342, −3.34563087625857584241152384107, −2.77140603684487745880483767053, −1.44642416367983555411354163440, 0, 1.44642416367983555411354163440, 2.77140603684487745880483767053, 3.34563087625857584241152384107, 4.13089930324050149293044638342, 5.01890694427427408822783295610, 5.93807492142009468922970216185, 6.83553897050101447754137725694, 7.52166405178376635301381609837, 8.005436328883148807493657774879

Graph of the $Z$-function along the critical line