Properties

Label 2-3808-1.1-c1-0-67
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.49·3-s + 3.75·5-s − 7-s + 3.23·9-s − 2.17·11-s − 3.12·13-s − 9.37·15-s + 17-s + 5.42·19-s + 2.49·21-s − 2.65·23-s + 9.09·25-s − 0.599·27-s − 6.42·29-s − 1.93·31-s + 5.42·33-s − 3.75·35-s + 9.89·37-s + 7.80·39-s − 5.75·41-s − 4.87·43-s + 12.1·45-s − 12.3·47-s + 49-s − 2.49·51-s + 0.635·53-s − 8.15·55-s + ⋯
L(s)  = 1  − 1.44·3-s + 1.67·5-s − 0.377·7-s + 1.07·9-s − 0.654·11-s − 0.867·13-s − 2.42·15-s + 0.242·17-s + 1.24·19-s + 0.545·21-s − 0.554·23-s + 1.81·25-s − 0.115·27-s − 1.19·29-s − 0.348·31-s + 0.944·33-s − 0.634·35-s + 1.62·37-s + 1.25·39-s − 0.899·41-s − 0.743·43-s + 1.81·45-s − 1.80·47-s + 0.142·49-s − 0.349·51-s + 0.0873·53-s − 1.09·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 + 2.49T + 3T^{2} \)
5 \( 1 - 3.75T + 5T^{2} \)
11 \( 1 + 2.17T + 11T^{2} \)
13 \( 1 + 3.12T + 13T^{2} \)
19 \( 1 - 5.42T + 19T^{2} \)
23 \( 1 + 2.65T + 23T^{2} \)
29 \( 1 + 6.42T + 29T^{2} \)
31 \( 1 + 1.93T + 31T^{2} \)
37 \( 1 - 9.89T + 37T^{2} \)
41 \( 1 + 5.75T + 41T^{2} \)
43 \( 1 + 4.87T + 43T^{2} \)
47 \( 1 + 12.3T + 47T^{2} \)
53 \( 1 - 0.635T + 53T^{2} \)
59 \( 1 + 15.1T + 59T^{2} \)
61 \( 1 + 8.50T + 61T^{2} \)
67 \( 1 - 8.06T + 67T^{2} \)
71 \( 1 - 5.65T + 71T^{2} \)
73 \( 1 - 6.15T + 73T^{2} \)
79 \( 1 - 0.358T + 79T^{2} \)
83 \( 1 - 1.64T + 83T^{2} \)
89 \( 1 - 7.35T + 89T^{2} \)
97 \( 1 + 4.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.948069107495714565975878127071, −7.18880774785927592035858599195, −6.29683885043946201489853221707, −5.96289257001448947119372395560, −5.12326520900979205586461116389, −4.92195656529938840023883681607, −3.33366814845751551746754572792, −2.32203404163882378370584488188, −1.34781187418814293042775889559, 0, 1.34781187418814293042775889559, 2.32203404163882378370584488188, 3.33366814845751551746754572792, 4.92195656529938840023883681607, 5.12326520900979205586461116389, 5.96289257001448947119372395560, 6.29683885043946201489853221707, 7.18880774785927592035858599195, 7.948069107495714565975878127071

Graph of the $Z$-function along the critical line