Properties

Label 2-3808-1.1-c1-0-64
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.601·3-s − 4.19·5-s + 7-s − 2.63·9-s + 2.71·11-s + 5.83·13-s − 2.52·15-s − 17-s − 6.47·19-s + 0.601·21-s − 3.86·23-s + 12.6·25-s − 3.39·27-s + 0.714·29-s + 9.96·31-s + 1.63·33-s − 4.19·35-s + 7.80·37-s + 3.51·39-s − 3.82·41-s − 0.681·43-s + 11.0·45-s − 7.53·47-s + 49-s − 0.601·51-s − 7.25·53-s − 11.4·55-s + ⋯
L(s)  = 1  + 0.347·3-s − 1.87·5-s + 0.377·7-s − 0.879·9-s + 0.818·11-s + 1.61·13-s − 0.652·15-s − 0.242·17-s − 1.48·19-s + 0.131·21-s − 0.806·23-s + 2.52·25-s − 0.652·27-s + 0.132·29-s + 1.79·31-s + 0.284·33-s − 0.709·35-s + 1.28·37-s + 0.562·39-s − 0.597·41-s − 0.103·43-s + 1.65·45-s − 1.09·47-s + 0.142·49-s − 0.0842·51-s − 0.996·53-s − 1.53·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 - 0.601T + 3T^{2} \)
5 \( 1 + 4.19T + 5T^{2} \)
11 \( 1 - 2.71T + 11T^{2} \)
13 \( 1 - 5.83T + 13T^{2} \)
19 \( 1 + 6.47T + 19T^{2} \)
23 \( 1 + 3.86T + 23T^{2} \)
29 \( 1 - 0.714T + 29T^{2} \)
31 \( 1 - 9.96T + 31T^{2} \)
37 \( 1 - 7.80T + 37T^{2} \)
41 \( 1 + 3.82T + 41T^{2} \)
43 \( 1 + 0.681T + 43T^{2} \)
47 \( 1 + 7.53T + 47T^{2} \)
53 \( 1 + 7.25T + 53T^{2} \)
59 \( 1 - 1.29T + 59T^{2} \)
61 \( 1 + 11.1T + 61T^{2} \)
67 \( 1 + 12.4T + 67T^{2} \)
71 \( 1 - 6.76T + 71T^{2} \)
73 \( 1 - 1.60T + 73T^{2} \)
79 \( 1 - 16.3T + 79T^{2} \)
83 \( 1 + 8.58T + 83T^{2} \)
89 \( 1 + 9.67T + 89T^{2} \)
97 \( 1 - 9.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.228853074205073251219128151348, −7.75144612950319980520769914595, −6.43453547020539655302226344647, −6.29482418253187832587092394923, −4.79010130937918531384185884124, −4.12243645778485355390197057914, −3.61581256567545850726217834206, −2.71870270576086624990711678566, −1.29517144764062230551391095014, 0, 1.29517144764062230551391095014, 2.71870270576086624990711678566, 3.61581256567545850726217834206, 4.12243645778485355390197057914, 4.79010130937918531384185884124, 6.29482418253187832587092394923, 6.43453547020539655302226344647, 7.75144612950319980520769914595, 8.228853074205073251219128151348

Graph of the $Z$-function along the critical line