Properties

Label 2-3808-1.1-c1-0-60
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.52·3-s + 0.600·5-s + 7-s + 3.35·9-s + 5.46·11-s − 4.95·13-s − 1.51·15-s − 17-s − 4.17·19-s − 2.52·21-s + 2.69·23-s − 4.63·25-s − 0.903·27-s + 3.46·29-s + 2.09·31-s − 13.7·33-s + 0.600·35-s − 7.22·37-s + 12.5·39-s − 1.58·41-s − 4.85·43-s + 2.01·45-s + 0.590·47-s + 49-s + 2.52·51-s + 3.36·53-s + 3.28·55-s + ⋯
L(s)  = 1  − 1.45·3-s + 0.268·5-s + 0.377·7-s + 1.11·9-s + 1.64·11-s − 1.37·13-s − 0.391·15-s − 0.242·17-s − 0.958·19-s − 0.550·21-s + 0.561·23-s − 0.927·25-s − 0.173·27-s + 0.642·29-s + 0.376·31-s − 2.39·33-s + 0.101·35-s − 1.18·37-s + 2.00·39-s − 0.248·41-s − 0.740·43-s + 0.300·45-s + 0.0861·47-s + 0.142·49-s + 0.353·51-s + 0.462·53-s + 0.442·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 + 2.52T + 3T^{2} \)
5 \( 1 - 0.600T + 5T^{2} \)
11 \( 1 - 5.46T + 11T^{2} \)
13 \( 1 + 4.95T + 13T^{2} \)
19 \( 1 + 4.17T + 19T^{2} \)
23 \( 1 - 2.69T + 23T^{2} \)
29 \( 1 - 3.46T + 29T^{2} \)
31 \( 1 - 2.09T + 31T^{2} \)
37 \( 1 + 7.22T + 37T^{2} \)
41 \( 1 + 1.58T + 41T^{2} \)
43 \( 1 + 4.85T + 43T^{2} \)
47 \( 1 - 0.590T + 47T^{2} \)
53 \( 1 - 3.36T + 53T^{2} \)
59 \( 1 + 5.54T + 59T^{2} \)
61 \( 1 + 15.0T + 61T^{2} \)
67 \( 1 + 6.53T + 67T^{2} \)
71 \( 1 - 12.5T + 71T^{2} \)
73 \( 1 - 9.33T + 73T^{2} \)
79 \( 1 - 14.6T + 79T^{2} \)
83 \( 1 - 7.33T + 83T^{2} \)
89 \( 1 - 13.8T + 89T^{2} \)
97 \( 1 + 15.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.072213329952810570969300753953, −7.05825721939224024551788255501, −6.56244691349293551899407607052, −6.00877648506407968534269900763, −5.00668613439213439946976604765, −4.64583967108928208173105616143, −3.66405779871391285204216619620, −2.23942423771496700639826564725, −1.26873881143764741253856420567, 0, 1.26873881143764741253856420567, 2.23942423771496700639826564725, 3.66405779871391285204216619620, 4.64583967108928208173105616143, 5.00668613439213439946976604765, 6.00877648506407968534269900763, 6.56244691349293551899407607052, 7.05825721939224024551788255501, 8.072213329952810570969300753953

Graph of the $Z$-function along the critical line