Properties

Label 2-3808-1.1-c1-0-58
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.75·3-s + 1.29·5-s + 7-s + 4.60·9-s − 3.92·11-s + 3.02·13-s − 3.55·15-s + 17-s − 1.45·19-s − 2.75·21-s + 2.74·23-s − 3.33·25-s − 4.43·27-s − 4.12·29-s − 5.90·31-s + 10.8·33-s + 1.29·35-s − 2.16·37-s − 8.34·39-s + 10.3·41-s − 0.144·43-s + 5.94·45-s − 0.778·47-s + 49-s − 2.75·51-s − 3.76·53-s − 5.07·55-s + ⋯
L(s)  = 1  − 1.59·3-s + 0.577·5-s + 0.377·7-s + 1.53·9-s − 1.18·11-s + 0.839·13-s − 0.918·15-s + 0.242·17-s − 0.333·19-s − 0.601·21-s + 0.571·23-s − 0.667·25-s − 0.853·27-s − 0.765·29-s − 1.06·31-s + 1.88·33-s + 0.218·35-s − 0.355·37-s − 1.33·39-s + 1.62·41-s − 0.0219·43-s + 0.886·45-s − 0.113·47-s + 0.142·49-s − 0.386·51-s − 0.517·53-s − 0.683·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 + 2.75T + 3T^{2} \)
5 \( 1 - 1.29T + 5T^{2} \)
11 \( 1 + 3.92T + 11T^{2} \)
13 \( 1 - 3.02T + 13T^{2} \)
19 \( 1 + 1.45T + 19T^{2} \)
23 \( 1 - 2.74T + 23T^{2} \)
29 \( 1 + 4.12T + 29T^{2} \)
31 \( 1 + 5.90T + 31T^{2} \)
37 \( 1 + 2.16T + 37T^{2} \)
41 \( 1 - 10.3T + 41T^{2} \)
43 \( 1 + 0.144T + 43T^{2} \)
47 \( 1 + 0.778T + 47T^{2} \)
53 \( 1 + 3.76T + 53T^{2} \)
59 \( 1 + 10.9T + 59T^{2} \)
61 \( 1 + 2.81T + 61T^{2} \)
67 \( 1 - 2.35T + 67T^{2} \)
71 \( 1 - 9.21T + 71T^{2} \)
73 \( 1 + 1.02T + 73T^{2} \)
79 \( 1 - 6.93T + 79T^{2} \)
83 \( 1 - 2.72T + 83T^{2} \)
89 \( 1 + 3.41T + 89T^{2} \)
97 \( 1 - 13.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.927540017926246538252297550646, −7.34198313724730952762279945148, −6.36052424271711993221239748728, −5.82294957871924565608292091499, −5.30659272695626744166193740540, −4.62647533895079938473297889911, −3.58406429786223865831553232854, −2.26090652555490600256794219674, −1.24751590195106360674071792598, 0, 1.24751590195106360674071792598, 2.26090652555490600256794219674, 3.58406429786223865831553232854, 4.62647533895079938473297889911, 5.30659272695626744166193740540, 5.82294957871924565608292091499, 6.36052424271711993221239748728, 7.34198313724730952762279945148, 7.927540017926246538252297550646

Graph of the $Z$-function along the critical line