Properties

Label 2-3808-1.1-c1-0-53
Degree $2$
Conductor $3808$
Sign $-1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.37·3-s + 0.716·5-s − 7-s + 2.64·9-s + 1.73·11-s + 1.39·13-s − 1.70·15-s + 17-s − 4.12·19-s + 2.37·21-s − 1.18·23-s − 4.48·25-s + 0.849·27-s + 6.51·29-s − 6.37·31-s − 4.12·33-s − 0.716·35-s − 8.59·37-s − 3.30·39-s + 9.04·41-s − 9.08·43-s + 1.89·45-s + 3.67·47-s + 49-s − 2.37·51-s + 9.86·53-s + 1.24·55-s + ⋯
L(s)  = 1  − 1.37·3-s + 0.320·5-s − 0.377·7-s + 0.880·9-s + 0.523·11-s + 0.385·13-s − 0.439·15-s + 0.242·17-s − 0.946·19-s + 0.518·21-s − 0.248·23-s − 0.897·25-s + 0.163·27-s + 1.21·29-s − 1.14·31-s − 0.718·33-s − 0.121·35-s − 1.41·37-s − 0.528·39-s + 1.41·41-s − 1.38·43-s + 0.282·45-s + 0.535·47-s + 0.142·49-s − 0.332·51-s + 1.35·53-s + 0.167·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 + 2.37T + 3T^{2} \)
5 \( 1 - 0.716T + 5T^{2} \)
11 \( 1 - 1.73T + 11T^{2} \)
13 \( 1 - 1.39T + 13T^{2} \)
19 \( 1 + 4.12T + 19T^{2} \)
23 \( 1 + 1.18T + 23T^{2} \)
29 \( 1 - 6.51T + 29T^{2} \)
31 \( 1 + 6.37T + 31T^{2} \)
37 \( 1 + 8.59T + 37T^{2} \)
41 \( 1 - 9.04T + 41T^{2} \)
43 \( 1 + 9.08T + 43T^{2} \)
47 \( 1 - 3.67T + 47T^{2} \)
53 \( 1 - 9.86T + 53T^{2} \)
59 \( 1 - 11.7T + 59T^{2} \)
61 \( 1 - 5.37T + 61T^{2} \)
67 \( 1 - 7.73T + 67T^{2} \)
71 \( 1 + 2.84T + 71T^{2} \)
73 \( 1 - 1.17T + 73T^{2} \)
79 \( 1 + 10.5T + 79T^{2} \)
83 \( 1 + 1.92T + 83T^{2} \)
89 \( 1 + 3.81T + 89T^{2} \)
97 \( 1 + 14.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.207488111037579585719499034365, −6.95184948192511354161659529570, −6.67268460044080262679739615545, −5.74908511425815616164756270994, −5.45512161796180508006142189738, −4.34980540183823317500781684766, −3.66750024114580001741295949431, −2.34560253224922895190592095453, −1.20437185677027119307468636464, 0, 1.20437185677027119307468636464, 2.34560253224922895190592095453, 3.66750024114580001741295949431, 4.34980540183823317500781684766, 5.45512161796180508006142189738, 5.74908511425815616164756270994, 6.67268460044080262679739615545, 6.95184948192511354161659529570, 8.207488111037579585719499034365

Graph of the $Z$-function along the critical line